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1. INTRODUCTION

We study the asymptotic behavior of the functional differential equation

y' =f(fs,V)+g(f,)’, TV) (1)

knowing some asymptotic properties about the solutions of the ordinary
differential equation

X' =f(1, x). (2)

Let tel=[0, ), xeR", fe C(IxR" R"), f(¢,0)=0, and the derivative
f.e C(IxR", R"). The functional perturbation g=g(t, »,z): IxR"xR" —
R” is a continuous function and T is a continuous operator mapping
C(Z, R") into C(I, R"). In this way, Eq. (1) may represent several interesting
cases, namely, integrodifferential equations [14-17] as

y=fty)+g (f, » JI k(1, s, y(s)) ds),

10

functional (delay) differential equations as

¥ty =f(t, y(1)) +g(t, p(t), y(t — 1)),

etc., taking

Ty(t):fl k(t, 5, p(s)) ds

4yt
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and
Ty(t)y=y(t—1),

respectively.

In Section 2, we will study the asymptotic behavior of the solutions of
some functional differential equations which include these classes of equa-
tions. Moreover, we determine the range of validity of the results. Thus, for
example, we make precise the initial conditions (the radius of attraction)
for which the solutions tend to zero as t— oc. Further, we obtain nice
estimates for the solutions of (1) depending on the integral-norm
(L ,-norm) of the variable coefficients of g. All that yields a more natural
approach to the nonlinear situation than the approach of Pachpatte [6, 7].
Finally, in Section 3 we give several examples illustrating the results.

2. MaIN RESULTS

In this section we will prove theorems which relate the asymptotic
behavior and boundedness of the solutions of Egs. (1) and (2).
Particularily, we will get several asymptotic properties of the solutions
of (2). Before stating and proving any result it is necessary to recall
some basic notions. Let x(¢, t4, x,) be the solution of (2) such that
x(ly, 1y, Xo) = Xo and @ = D(1, t,, x,) the fundamental matrix of the varia-
tional equation

() =11, x(¢, ty, xo)) z(t) (3)

such that @(t,, 1,, x,) is the identity matrix (see {2]).

DEerFINITION 1. The null solution x =0 of (2) is exponentially asymptoti-
cally stable in variation if there exist positive constants J, «, and M such
that

(D, 16, X} S Me X~ Vizi,20 (4)

for Jlx, | <é.

Remark 1. The last definition implies (see [9]) that for ||x,| <o
-, 16, X)) S M lxpll e ™7 (121,20). (5)

Now, we will need a “solution” of the functional inequalities

uWny<e+ 3 J’/'.,-(s) w(u(s))ds, 1€ [ab] (6)

=174
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and

u(t) e+ Jr A(s) wi(u(s)) ds

[ das) s U J(1) walu(1)) dt] ds, )

[

where the functions w; (1 <i< p) satisfy the conditions:

(H) The functions w, (1 <i<p) are continuous and nondecreasing
on [0, x) and positive on (0, oo) such that w;,,  /w, (1<i<p—1) are
nondecreasing on (0, oc).

To state these results, we define:

1. The functions

e =[" L w0450 (1<k<p) (®)

w Wi(s),

and W, ' their inverse function.

2. For b2b,z2a and A;:{aq, b]—[0,oc) (1<i<p) integrable
functions, we define the functions ¢(u)=u and

Qe=Wp Wi ooy,
Y(u) =W, ' TW, () +2,(a, b)),

(9)
where

b1
2 (a, b)) =j A(s) ds.

a

The function ¢, (and ¥,) does not depend on the choice of u, in (8).
Any ¢, (1 <k <p)is a continuous, positive, and nondecreasing function on
its domain (see Remark 4 in [8]).

Thus, we have the following theorems:

THEOREM A [8]. Assume that the functions w, (1 <i<p) satisfy (H),
the functions u and A, (1<i<p) are continuous and nonnegative on the
interval [a, b], and the constant c is positive. If (6) holds, then for te[a, b,)

Wty < W, [Wp(q)p () +j' 7(s5) ds:I, (10)

[2
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where b, € [a, b] is a number such that

x ds

ooy Wil8)

xk(a,bl):fh' Ju(5) ds < (1<k<p) (11)

THEOREM B. Under the conditions of Theorem A, if (7) holds then (10)
is true for p=23, where b, satisfies (11) for p=73.

Several applications of this theorem can be founded in [3-5;7,8].
We remark that b, in (11) can be taken as large as possible if

["2ow (<icp (12)
1 ow,(s)

which implies that any ¢, (and ) is defined for all ¥ and 4, > a. Then
(10) is vahd for all 1> a. The dual condition to (12), namely,

J‘ “__ . (<i<p) (13)
0+W,—(S)

implies that any ¢, (and V) is defined for ail » small enough and any
b, = a. Then (10) is valid for any ¢ > a if ¢ is small enough. Moreover, (13)
implies

e 07)=0  (1<k<p), (14)

which is actually the stability condition.
Further, the inequalities (11) allow us to compute 5,. See [8, 10, 11, 13].
In the following, we consider the functions ¢; (1 <i<p) given by (9)
with b, = oz,

THEOREM 1. Let w, (1 <i<p) be as in Theorem A and let us assume the
Jollowing hypotheses.

(1) 4, (1<i<p) are continuous nonnegative functions on I and
i€ LI
(ii) for tz2520 and z,yeR" we have | @4, s, v)gls, »z)|<
i As)olrl); and
(iii) there is a positive constant ¢ such that

o0 o ds
/ ds < .
J0 Aols) s fw,,f. ey @,(5)
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Then, for each bounded solution x(1, tg, xo) of (2) such that || x(1, ty, xo)|
<c for t2 1,20, the solution y(1, ty, xo) of (1) is defined and bounded on
[to, o) and

3t 1o, X )l < @, (11X )- (15}

Proof. Given any i, € [, the nonlinear variation of constants formula of
Alekseev [ 1] allows us to relate the solution of (1) and (2) with the same
initial condition as follows

y(t)=x(r)+r D(t, s, v(s)) g(s, v(s), Ty(s)) ds. (16)

Yt

Therefore

I !
1< Ixl+ Y [ sy, () ds,
=110
where || x|, =sup{|x(¢){/tel}. Then for all 121,20 from Theorem A we
have

Iy <sw,! [W,,(cﬂp 1(c‘))+jr /1,,(5')615] <o, llxl) (17)
Condition (iii) implies ¢, (c)<x. Then ¢,(lx].)<e,(c)<o and
we get the boundedness for the solution y(r) in its interval of definition
[to, 1)) Then for any ¢ fixed @(¢, s, y(s)) g(s, v(s), Ty(s))e L ([, t,)) as a
function of s and lim,_, - y(¢) exists. Then we can continue the solunon
(1) beyond ¢,.
Finally, by (17), »{r) is bounded on [#,, + cc) and (15) follows. So, the
proof is complete.

The method used in Theorem 1 can be applied to delay-differential
equations [1, 12] and, in general, to those equations satisfying

lD(1, 5, y(s)) g(s, y(s), Ty(s)HIl < Z Ails) o, (lyll,)  (12520),
i=1

where for some 1* =t*(1) <t (as t* =1 —r in difference equations):

Iyl =supip(c)l,  1,=[r* 1= [0,1].

rel;
In fact, in this case from (16) we deduce
<, + 3 [ 2 i) ds
i=t"f0

and we apply Theorem A to u(t)=|y|,. See [1, 12].
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Remark 2. (1) If (12) holds then condition (iii} of Theorem 1 is fulfilled
for all ¢>0. (2) If (13} holds then (see [8]) there exists always ¢ small
enough satisfying condition (iii). (3) Finally, in the case that 1/w,e L,((0, o))
(1 <i<p), the inequality

s

0 (l),'(S)

f: hu(s)ds>

for some i, implies that there is no ¢>0 satisfying condition (iii) of
Theorem 1. Otherwise, there always exists ¢ small enough satisfying
condition (iii). In every case, the biggest ¢ satisfying condition (iii) is

c=0,'(x) (18)
(see Sect. 3). So, we get

CoroLLARY . (1) If (12) holds then the result of Theorem 1 is true for
all solutions. (2) If (13) holds then the result of the Theorem 1 is true only
Jor x such that || x|, is small enough, exactly \x| . <@, o).

Remark 3. The equation y' =y%/t3 y(1)=y,, t=1, and the solution

y =t shows that the result of Theorem 1 is not true for arbitrary solutions.

In fact, here x'=0, x(1 1y, X4)=X4, and o, (u)=u? i(s)=s5"1¢

L ([1, =c)). The condition

Lx a(s) ds < j %‘;

is only true for c< 1.

THEOREM 2. Assume that w; (1 <i<3)and i, (1 <i<3)satisfy Theorem 1
and that

(1) For0<s<it< +oc and ye C(I, R") we have

(D1, 5, ¥(s)) gls, ¥(s), Ty(sHI < Ai(s) @, ([ y($)

+ 2als) @, (j A0 o3 (o)) dr)

and
(1ii) there is a positive constant ¢ such that

+x s

p2(c) w}(s).

f T Ja(s) ds <
0
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Then for each bounded solution x(1, t,, xy) of (2) such that || x(t, ty, X))l
<e for t 2ty 20, the corresponding solution y(t, ty, xo) of (1) is defined and
bounded on [ 1, o©) and

(2, 1o, x0)ll < @5(l1x]l..). (19)

Proof. As in Theorem 1, from Alekseev’s formula (16) we get that

< el + |

0

| 1),
w10 ([ 2oty de )| as
Using Theorem B and a technique analogous to that used in Theorem 1

we can prove that y(1, 14, x,) 1s defined and bounded on (14, + ).

THEOREM 3. Assume that the null solution of (2) is exponentially
asymptotically stable in variation. Suppose also that the hypotheses of
Theorem 2 are fulfilled, where (i) is replaced by

(1) For s 20 and ye C(I, R") we have
lg(s, ¥(s), Ty(s) < Ay(s) @, (Il ()]

+ 125 0 ([ A0 (101 i )

43

Then every solution y of (1) which satisfies || y(to)| < cM ™" is defined on
[to, ), tends zo zero as t — o0, and satisfies

1yt 10, o)l S @3(M [[yoll). (20)

Moreover, the zero solution of the functional equation (1) is asymptotically
stable if (12) holds.

Proof. Again, from Alekseev’s formula (16) and (5) we obtain that

IOl < M flx, +fl IP(1, 5, y(5)) g(s, ¥(s), Ty(s))]| ds.

o

By (5), the matrix @ is bounded on [¢,, +oc). Therefore by (ii)’ the
hypotheses of Theorem 2 are satisfied and then y is defined and bounded
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on [f,, oc) and it verifies (20). Then g(s):=g(s, y(s), Ty(s)) is an inte-
grable function on [#,, oc). To end the proof of the theorem we need to
show

lim [ 1@, s, ys)I lgls, ¥(s), Ty(s))l ds =0.

r— + o0

We have

[ 1002, 5,y (s, yts), Tr()) ds

o

<Me ™™ [ e 3(s)l ds

0

(1 + )2 t
e ) ds+M [ 2(s)l ds

()] {2+ 1072

<M€—MJ-
<Me et [gsyids+ [ g ds

1} (r+1)2
<Me == [T g(s)|ds+M [ |&(s)] ds~0

0] (1+19)/2

as t > + oo. Finally, the stability follows at once from (20) using (14).

3. EXAMPLES

In this section we will illustrate the above results, showing explicitly the
radius of attraction and the estimates for the solutions.

ExaMpLE 1. Consider the functional differential equation
y'=—ev+gty, Ty), (21)

where g(t, y, z)=4,(¢t) y + 4,(¢) z and

1

Ty = has)yMshds, 1210,

1

k>=1;and 4,, i=1,2, 3, are integrable continuous function on I.
Equation (21) is a Volterra integrodifferential equation [14-17]. Solving
equation

X' = —e'x? (22)
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we have
|xo]

x(t, ty, Xo) = 5-

o Xo) =1 +2x3(e' —e®))'?

It is easy to see that the null solution of Eq.(22) is exponentially

asymptotically stable in variation with o= 1.
Now, we have
w,(u)=o,(u)=u, wi(u)=u*. Then conditions (i) and (ii) of

()
Theorem 3 are automatically verified.
To verify conditions (iii) of Theorem 2,
ds

(I1)
+ +
L As(s) ds <J Rt

)

let us consider two cases:
(a) k=1.In this case condition (I} is satisfied for any ¢ > 0 since

/ye€ L([) and the second integral has value + co.
(b) k> 1.1In this case it is necessary to choose the correct constant

¢. We have that
v ds_ —gyle) *

11—k

k]

J

2oe) Sk
and if a;={ ™ A;(s)ds (i=1, 2, 3} then condition (II) is equivalent to the

@

inequality
1 &
¢,(c) (23)

<
BT

Since ¢, is a monotone function and by (14) lim,_q+ @,(u)=0,
choosing ¢ small enough we will get that (23) is satisfied. Solving the

equation
_ @y{c*)! B

=T

we can see that (actually ¢* = ¢; '(o0))

*=p, (" Hak—1)).

5 ! explicitly. By definition, we

For determining c* we will calculate ¢

have that
@, (u)= W;I[Wl(u)'f'a]]:ueml
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and
@a(u) =W '[ Wy, (u)) +2,]
=@, (u) e =uye' ™+,
Then
®; (u)=ue 1+
and therefore
et Ko BT,
Then taking ¢ < ¢* condition (23) is satisfied.

Thus, finally, a direct application of Theorem 3 establishes that every
solution y(t, 1y, Xo) tends to zero as t — + oo if |xof <c*M ™', ie., if

Ixoll < M~ e tu*=k=Vy (k—1), (24)

which gives an explicit radius of attraction. Moreover, the zero solution of
the functional equation (21) is asymptotically stable and the following
estimate is true,

Me'™ ) jx, |
Y= (M g )T e® Dy (k1)
which is valid, in effect, only if (24) holds. The radius of attraction (24) and

the estimate (25) depend directly on the integrals «, of the coefficients 4,(t)
(i=1,2,3)

(25)

Hy(t’ t09 xO)H S

ExaMpLE 2. Consider the delay-differential equation

y' =Ty, 12 max(t, 15, T3), (26)
where
Ty(t)=4(t) p(t —10)" + 2a(1) p(£ = 12)" + A5(1) p(1 — 15)"™
and 7,, n; (1 <i<3) are real numbers such that 1 <n,<n,<n,;, 1,>0. In
this case, we have

(I) If we take w,(u)=u" (1 <i<3) then conditions (i) and (ii) are
verified.
(ITy To see that condition (iii) in Theorem 1 is satisfied we observe that

Polc) =c,
e (c)=[c' "+, (1 —n)]t-—m
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for 0<c¢<e, where
¢ = (ay(n, — 1))V
@afe)=[Le' " oy (L=, )02 D0 D gy (1 — ) 100
for 0 < c < c,, where

e3= Loy (my = 1) [ogny — 1)1 Do e =,

We have

x ds 1 e,
Jw,fm-) wi(s) n;—1 (i-1(e))

for ce Dom ¢; ;. Then condition (iii) in Theorem 1 is equivalent to

% < (@x(c))'

ny,—1

or

1 i(ny—1)
<) o

Since ¢, (i=1, 2, 3) are monotone functions and by (14) lim, 4+ ¢,(c)=0°,
choosing ¢ small enough we get that (27) is satisfied. Solving the equation

1 iy —1)
*y __
wﬂc)—<m0u—10

c* = {[a3(n3 _ 1)('137 1)/(n3 '*l)_l_az(n2 _ 1)](111 1)i(ny— 1) + 0‘1(”1 _ 1)}15’(1 —ny}

we obtain

(actually ¢* = @3 '(20)). Then taking ¢ < ¢*, condition (iii) in Theorem 1 is
satisfied.

Since the solutions of differential equation x'=0 are x(¢, to, Xo) = X,
then by a remark immediately after Theorem | the conditions of this
theorem are satisfied and we can conclude that every solution y(1, ¢,, x,) of
the delay-differential equation (26) such that |x,| <c* is defined and
bounded on [f,, oc). Moreover, by (15)

7, 16, x0)|l < @3l X0 1])
=[xl "+, (1 —m,) 0 Dm— 1

a1 =ng) ] Vg1 )
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which directly also establishes the stability of the delay-differential equation
(26). Again, the radius of attraction and the estimate of the solutions
depend directly on the integrals «; of the coefficients A,(t) (i=1, 2, 3).
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