57 research outputs found

    The Feasibility of Percutaneous Externally Assembled Laparoscopic Nephrectomy: a New Surgical System

    Get PDF
    Laparoendoscopic single-site (LESS) nephrectomy provides excellent cosmetic outcomes, but is technically challenging due to loss of triangulation and increased instrument collision. A novel Percutaneous Externally Assembled Laparoscopic (PEAL) surgical system was developed to simplify minimally invasive surgery while providing a nearly scarless outcome. In this study, the feasibility of the PEAL system for nephrectomy was determined

    Chemical data assimilation estimates of continental U.S. ozone and nitrogen budgets during the Intercontinental Chemical Transport Experiment-North America

    Get PDF
    Global ozone analyses, based on assimilation of stratospheric profile and ozone column measurements, and NOy predictions from the Real-time Air Quality Modeling System (RAQMS) are used to estimate the ozone and NOy budget over the continental United States during the July-August 2004 Intercontinental Chemical Transport Experiment-North America (INTEX-A). Comparison with aircraft, satellite, surface, and ozonesonde measurements collected during INTEX-A show that RAQMS captures the main features of the global and continental U.S. distribution of tropospheric ozone, carbon monoxide, and NOy with reasonable fidelity. Assimilation of stratospheric profile and column ozone measurements is shown to have a positive impact on the RAQMS upper tropospheric/lower stratosphere ozone analyses, particularly during the period when SAGE III limb scattering measurements were available. Eulerian ozone and NOy budgets during INTEX-A show that the majority of the continental U.S. export occurs in the upper troposphere/lower stratosphere poleward of the tropopause break, a consequence of convergence of tropospheric and stratospheric air in this region. Continental U.S. photochemically produced ozone was found to be a minor component of the total ozone export, which was dominated by stratospheric ozone during INTEX-A. The unusually low photochemical ozone export is attributed to anomalously cold surface temperatures during the latter half of the INTEX-A mission, which resulted in net ozone loss during the first 2 weeks of August. Eulerian NOy budgets are shown to be very consistent with previously published estimates. The NOy export efficiency was estimated to be 24%, with NOx + PAN accounting for 54% of the total NOy export during INTEX-A. Copyright 2007 by the American Geophysical Union

    3D Air Quality and the Clean Air Interstate Rule: Lagrangian Sampling of CMAQ Model Results to Aid Regional Accountability Metrics

    Get PDF
    The Clean Air Interstate Rule (CAIR) is expected to reduce transport of air pollutants (e.g. fine sulfate particles) in nonattainment areas in the Eastern United States. CAIR highlights the need for an integrated air quality observational and modeling system to understand sulfate as it moves in multiple dimensions, both spatially and temporally. Here, we demonstrate how results from an air quality model can be combined with a 3d monitoring network to provide decision makers with a tool to help quantify the impact of CAIR reductions in SO2 emissions on regional transport contributions to sulfate concentrations at surface monitors in the Baltimore, MD area, and help improve decision making for strategic implementation plans (SIPs). We sample results from the Community Multiscale Air Quality (CMAQ) model using ensemble back trajectories computed with the NASA Langley Research Center trajectory model to provide Lagrangian time series and vertical profile information, that can be compared with NASA satellite (MODIS), EPA surface, and lidar measurements. Results are used to assess the regional transport contribution to surface SO4 measurements in the Baltimore MSA, and to characterize the dominant source regions for low, medium, and high SO4 episodes

    A longitudinal study of tobacco use among American Indian and Alaska Native tribal college students

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>American Indians (AI) have the highest smoking rates of any ethnic group in the US (40.8%), followed most closely by African Americans (24.3%) and European Americans (23.6%). AI smokers also have more difficulty quitting smoking compared to other ethnic groups, evidenced by their significantly lower quit ratios, and are among the least successful in maintaining long term abstinence. While health disparities like these have existed for years among AI, the epidemiology of smoking and nicotine dependence has not been optimally described among this underserved population.</p> <p>Our overarching hypothesis is that the susceptibility of AI to cigarette smoking and nicotine dependence and its consequences has both an underlying nicotine metabolism component as well as psychosocial, cultural, and environment causes. We are well-positioned to explore this issue for the first time in this population. Our objective is to establish a cohort of AI tribal college/university students to determine the predictors of smoking initiation (non-use to experimentation), progression (experimentation to established use), and cessation (established use to cessation). Much of what is known about the process of smoking initiation and progression comes from quantitative studies with non-Native populations. Information related to smoking use among AI tribal college/university (TCU) students is entirely unknown and critically needs further investigation. This study will be the first of its kind among AI college students who are at the highest risk among all ethnic groups for tobacco dependence.</p> <p>Methods/design</p> <p>First year students at Haskell Indian Nations University in Kansas will be recruited over four consecutive years and will be surveyed annually and repeatedly through year 5 of the study. We will use both longitudinal quantitative surveys and qualitative focus group methods to examine key measures and determinants of initiation and use among this high risk group.</p

    Temporal and Tissue Specific Regulation of RP-Associated Splicing Factor Genes PRPF3, PRPF31 and PRPC8—Implications in the Pathogenesis of RP

    Get PDF
    Genetic mutations in several ubiquitously expressed RNA splicing genes such as PRPF3, PRP31 and PRPC8, have been found to cause retina-specific diseases in humans. To understand this intriguing phenomenon, most studies have been focused on testing two major hypotheses. One hypothesis assumes that these mutations interrupt retina-specific interactions that are important for RNA splicing, implying that there are specific components in the retina interacting with these splicing factors. The second hypothesis suggests that these mutations have only a mild effect on the protein function and thus affect only the metabolically highly active cells such as retinal photoreceptors.We examined the second hypothesis using the PRPF3 gene as an example. We analyzed the spatial and temporal expression of the PRPF3 gene in mice and found that it is highly expressed in retinal cells relative to other tissues and its expression is developmentally regulated. In addition, we also found that PRP31 and PRPC8 as well as snRNAs are highly expressed in retinal cells.Our data suggest that the retina requires a relatively high level of RNA splicing activity for optimal tissue-specific physiological function. Because the RP18 mutation has neither a debilitating nor acute effect on protein function, we suggest that retinal degeneration is the accumulative effect of decades of suboptimal RNA splicing due to the mildly impaired protein

    Prioritization of knowledge-needs to achieve best practices for bottom trawling in relation to seabed habitats

    Get PDF
    Management and technical approaches that achieve a sustainable level of fish production while at the same time minimizing or limiting the wider ecological effects caused through fishing gear contact with the seabed might be considered to be ‘best practice’. To identify future knowledge-needs that would help to support a transition towards the adoption of best practices for trawling, a prioritization exercise was undertaken with a group of 39 practitioners from the seafood industry and management, and 13 research scientists who have an active research interest in bottom-trawl and dredge fisheries. A list of 108 knowledge-needs related to trawl and dredge fisheries was developed in conjunction with an ‘expert task force’. The long list was further refined through a three stage process of voting and scoring, including discussions of each knowledge-need. The top 25 knowledge-needs are presented, as scored separately by practitioners and scientists. There was considerable consistency in the priorities identified by these two groups. The top priority knowledge-need to improve current understanding on the distribution and extent of different habitat types also reinforced the concomitant need for the provision and access to data on the spatial and temporal distribution of all forms of towed bottom-fishing activities. Many of the other top 25 knowledge-needs concerned the evaluation of different management approaches or implementation of different fishing practices, particularly those that explore trade-offs between effects of bottom trawling on biodiversity and ecosystem services and the benefits of fish production as food.Fil: Kaiser, Michel J.. Bangor University; Reino UnidoFil: Hilborn, Ray. University of Washington; Estados UnidosFil: Jennings, Simon. Fisheries and Aquaculture Science; Reino UnidoFil: Amaroso, Ricky. University of Washington; Estados UnidosFil: Andersen, Michael. Danish Fishermen; DinamarcaFil: Balliet, Kris. Sustainable Fisheries Partnership; Estados UnidosFil: Barratt, Eric. Sanford Limited; Nueva ZelandaFil: Bergstad, Odd A. Institute of Marine Research; NoruegaFil: Bishop, Stephen. Independent Fisheries Ltd; Nueva ZelandaFil: Bostrom, Jodi L. Marine Stewardship Council; Reino UnidoFil: Boyd, Catherine. Clearwater Seafoods; CanadáFil: Bruce, Eduardo A. Friosur S.A.; ChileFil: Burden, Merrick. Marine Conservation Alliance; Estados UnidosFil: Carey, Chris. Independent Fisheries Ltd.; Estados UnidosFil: Clermont, Jason. New England Aquarium; Estados UnidosFil: Collie, Jeremy S. University of Rhode Island,; Estados UnidosFil: Delahunty, Antony. National Federation of Fishermen; Reino UnidoFil: Dixon, Jacqui. Pacific Andes International Holdings Limited; ChinaFil: Eayrs, Steve. Gulf of Maine Research Institute; Estados UnidosFil: Edwards, Nigel. Seachill Ltd.; Reino UnidoFil: Fujita, Rod. Environmental Defense Fund; Reino UnidoFil: Gauvin, John. Alaska Seafood Cooperative; Estados UnidosFil: Gleason, Mary. The Nature Conservancy; Estados UnidosFil: Harris, Brad. Alaska Pacific University; Estados UnidosFil: He, Pingguo. University of Massachusetts Dartmouth; Estados UnidosFil: Hiddink, Jan G. Bangor University; Reino UnidoFil: Hughes, Kathryn M. Bangor University; Reino UnidoFil: Inostroza, Mario. EMDEPES; ChileFil: Kenny, Andrew. Fisheries and Aquaculture Science; Reino UnidoFil: Kritzer, Jake. Environmental Defense Fund; Estados UnidosFil: Kuntzsch, Volker. Sanford Limited; Estados UnidosFil: Lasta, Mario. Diag. Montegrande N° 7078. Mar del Plata; ArgentinaFil: Lopez, Ivan. Confederacion Española de Pesca; EspañaFil: Loveridge, Craig. South Pacific Regional Fisheries Management Organisation; Nueva ZelandaFil: Lynch, Don. Gorton; Estados UnidosFil: Masters, Jim. Marine Conservation Society; Reino UnidoFil: Mazor, Tessa. CSIRO Marine and Atmospheric Research; AustraliaFil: McConnaughey, Robert A. US National Marine Fisheries Service; Estados UnidosFil: Moenne, Marcel. Pacificblu; ChileFil: Francis. Marine Scotland Science; Reino UnidoFil: Nimick, Aileen M. Alaska Pacific University; Estados UnidosFil: Olsen, Alex. A. Espersen; DinamarcaFil: Parker, David. Young; Reino UnidoFil: Parma, Ana María. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Nacional Patagónico; ArgentinaFil: Penney, Christine. Clearwater Seafoods; CanadáFil: Pierce, David. Massachusetts Division of Marine Fisheries; Estados UnidosFil: Pitcher, Roland. CSIRO Marine and Atmospheric Research; AustraliaFil: Pol, Michael. Massachusetts Division of Marine Fisheries; Estados UnidosFil: Richardson, Ed. Pollock Conservation Cooperative; Estados UnidosFil: Rijnsdorp, Adriaan D. Wageningen IMARES; Países BajosFil: Rilatt, Simon. A. Espersen; DinamarcaFil: Rodmell, Dale P. National Federation of Fishermen's Organisations; Reino UnidoFil: Rose, Craig. FishNext Research; Estados UnidosFil: Sethi, Suresh A. Alaska Pacific University; Estados UnidosFil: Short, Katherine. F.L.O.W. Collaborative; Nueva ZelandaFil: Suuronen, Petri. Fisheries and Aquaculture Department; ItaliaFil: Taylor, Erin. New England Aquarium; Estados UnidosFil: Wallace, Scott. The David Suzuki Foundation; CanadáFil: Webb, Lisa. Gorton's Inc.; Estados UnidosFil: Wickham, Eric. Unit four –1957 McNicoll Avenue; CanadáFil: Wilding, Sam R. Monterey Bay Aquarium; Estados UnidosFil: Wilson, Ashley. Department for Environment; Reino UnidoFil: Winger, Paul. Memorial University Of Newfoundland; CanadáFil: Sutherland, William J. University of Cambridge; Reino Unid

    Diving into the vertical dimension of elasmobranch movement ecology

    Get PDF
    Knowledge of the three-dimensional movement patterns of elasmobranchs is vital to understand their ecological roles and exposure to anthropogenic pressures. To date, comparative studies among species at global scales have mostly focused on horizontal movements. Our study addresses the knowledge gap of vertical movements by compiling the first global synthesis of vertical habitat use by elasmobranchs from data obtained by deployment of 989 biotelemetry tags on 38 elasmobranch species. Elasmobranchs displayed high intra- and interspecific variability in vertical movement patterns. Substantial vertical overlap was observed for many epipelagic elasmobranchs, indicating an increased likelihood to display spatial overlap, biologically interact, and share similar risk to anthropogenic threats that vary on a vertical gradient. We highlight the critical next steps toward incorporating vertical movement into global management and monitoring strategies for elasmobranchs, emphasizing the need to address geographic and taxonomic biases in deployments and to concurrently consider both horizontal and vertical movements
    corecore