84 research outputs found

    Spatial Relational Memory Requires Hippocampal Adult Neurogenesis

    Get PDF
    The dentate gyrus of the hippocampus is one of the few regions of the mammalian brain where new neurons are generated throughout adulthood. This adult neurogenesis has been proposed as a novel mechanism that mediates spatial memory. However, data showing a causal relationship between neurogenesis and spatial memory are controversial. Here, we developed an inducible transgenic strategy allowing specific ablation of adult-born hippocampal neurons. This resulted in an impairment of spatial relational memory, which supports a capacity for flexible, inferential memory expression. In contrast, less complex forms of spatial knowledge were unaltered. These findings demonstrate that adult-born neurons are necessary for complex forms of hippocampus-mediated learning

    Transcriptional Effects of Glucocorticoid Receptors in the Dentate Gyrus Increase Anxiety-Related Behaviors

    Get PDF
    The Glucocorticoid Receptor (GR) is a transcription factor ubiquitously expressed in the brain. Activation of brain GRs by high levels of glucocorticoid (GC) hormones modifies a large variety of physiological and pathological-related behaviors. Unfortunately the specific cellular targets of GR-mediated behavioral effects of GC are still largely unknown. To address this issue, we generated a mutated form of the GR called ΔGR. ΔGR is a constitutively transcriptionally active form of the GR that is localized in the nuclei and activates transcription without binding to glucocorticoids. Using the tetracycline-regulated system (Tet-OFF), we developed an inducible transgenic approach that allows the expression of the ΔGR in specific brain areas. We focused our study on a mouse line that expressed ΔGR almost selectively in the glutamatergic neurons of the dentate gyrus (DG) of the hippocampus. This restricted expression of the ΔGR increased anxiety-related behaviors without affecting other behaviors that could indirectly influence performance in anxiety-related tests. This behavioral phenotype was also associated with an up-regulation of the MAPK signaling pathway and Egr-1 protein in the DG. These findings identify glutamatergic neurons in the DG as one of the cellular substrate of stress-related pathologies

    Altered surface mGluR5 dynamics provoke synaptic NMDAR dysfunction and cognitive defects in Fmr1 knockout mice

    Get PDF
    Metabotropic glutamate receptor subtype 5 (mGluR5) is crucially implicated in the pathophysiology of Fragile X Syndrome (FXS); however, its dysfunction at the sub-cellular level, and related synaptic and cognitive phenotypes are unexplored. Here, we probed the consequences of mGluR5/Homer scaffold disruption for mGluR5 cell-surface mobility, synaptic N-methyl-D-Aspartate receptor (NMDAR) function, and behavioral phenotypes in the second-generation Fmr1 knockout (KO) mouse. Using single-molecule tracking, we found that mGluR5 was significantly more mobile at synapses in hippocampal Fmr1 KO neurons, causing an increased synaptic surface co-clustering of mGluR5 and NMDAR. This correlated with a reduced amplitude of synaptic NMDAR currents, a lack of their mGluR5-Activated long-Term depression, and NMDAR/hippocampus dependent cognitive deficits. These synaptic and behavioral phenomena were reversed by knocking down Homer1a in Fmr1 KO mice. Our study provides a mechanistic link between changes of mGluR5 dynamics and pathological phenotypes of FXS, unveiling novel targets for mGluR5-based therapeutics

    Spatial Learning Depends on Both the Addition and Removal of New Hippocampal Neurons

    Get PDF
    The role of adult hippocampal neurogenesis in spatial learning remains a matter of debate. Here, we show that spatial learning modifies neurogenesis by inducing a cascade of events that resembles the selective stabilization process characterizing development. Learning promotes survival of relatively mature neurons, apoptosis of more immature cells, and finally, proliferation of neural precursors. These are three interrelated events mediating learning. Thus, blocking apoptosis impairs memory and inhibits learning-induced cell survival and cell proliferation. In conclusion, during learning, similar to the selective stabilization process, neuronal networks are sculpted by a tightly regulated selection and suppression of different populations of newly born neurons

    Maternal Environment Influences Cocaine Intake in Adulthood in a Genotype-Dependent Manner

    Get PDF
    Background: Accumulating epidemiological evidence points to the role of genetic background as a modulator of the capacity of adverse early experiences to give rise to mental illness. However, direct evidence of such gene-environment interaction in the context of substance abuse is scarce. In the present study we investigated whether the impact of early life experiences on cocaine intake in adulthood depends on genetic background. In addition, we studied other behavioral dimensions associated with drug abuse, i.e. anxiety- and depression-related behaviors. Methodology/Principal Findings: For this purpose, we manipulated the maternal environment of two inbred mouse strains, the C57BL/6J and DBA/2J by fostering them with non-related mothers, i.e. the C3H/HeN and AKR strains. These mother strains show respectively high and low pup-oriented behavior. As adults, C57BL/6J and DBA/2J were tested either for cocaine intravenous self-administration or in the elevated plus-maze and forced swim test (FST). We found that the impact of maternal environment on cocaine use and a depression-related behavior depends upon genotype, as cocaine self-administration and behavior in the FST were influenced by maternal environment in DBA/2J, but not in C57BL/6J mice. Anxiety was not influenced by maternal environment in either strain. Conclusions/Significance: Our experimental approach could contribute to the identification of the psychobiological factor

    Identification de la cible cellulaire des effets des glucocorticoïdes

    No full text
    BORDEAUX2-BU Santé (330632101) / SudocSudocFranceF

    Integrated physiology and pathophysiology of CB1-mediated effects of the endocannabinoid system.

    No full text
    International audienceThe discovery of the endocannabinoid system (ECS) has raised a large interest in the scientific community providing us with a strikingly long list of apparently independent multi organ effects. As a result, in most reviews on this issue the main function of the ECS is considered as modulatory. Unfortunately, this vision does not add much to our understanding of the specific biological function of the ECS. Thus, modulatory is what in general all biological systems are or should be. In this review we will show that the apparent inconsistent puzzle of the very different tissue specific effects of endocannabinoids (ECs) can be reconstructed in one unitary picture. This picture clearly shows that all the different CB1-mediated effects of ECs sub-serve one major physiological function: to facilitate and increase energy storage. We will also analyze the implications of this unitary vision of the ECS in different contexts. First, in the context of the systems that regulate energy balance, introducing a new systematization based on two homeostatic systems: an endostatic and an exostatic system. Second, in the context of evolution, showing how the function of the ECS has shifted from essential to survival to almost pathological in current times. Finally, in a pathophysiological context, introducing the new concept of "proactive evolution diseases", which can explain the current obesity epidemic and the role the ECS plays in it
    corecore