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The meso-cortico-limbic system, via dopamine release, encodes the rewarding and
reinforcing properties of natural rewards. It is also activated in response to abused
substances and is believed to support drug-related behaviors. Dysfunctions of this system
lead to several psychiatric conditions including feeding disorders and drug addiction. These
disorders are also largely influenced by environmental factors and in particular stress
exposure. Stressors activate the corticotrope axis ultimately leading to glucocorticoid
hormone (GCs) release. GCs bind the glucocorticoid receptor (GR) a transcription
factor ubiquitously expressed including within the meso-cortico-limbic tract. While GR
within dopamine-innervated areas drives cocaine’s behavioral responses, its implication
in responses to other psychostimulants such as amphetamine has never been clearly
established. Moreover, while extensive work has been made to uncover the role of this
receptor in addicted behaviors, its contribution to the rewarding and reinforcing properties
of food has yet to be investigated. Using mouse models carrying GR gene inactivation in
either dopamine neurons or in dopamine-innervated areas, we found that GR in dopamine
responsive neurons is essential to properly build amphetamine-induced conditioned place
preference and locomotor sensitization. c-Fos quantification in the nucleus accumbens
further confirmed defective neuronal activation following amphetamine injection. These
diminished neuronal and behavioral responses to amphetamine may involve alterations in
glutamate transmission as suggested by the decreased MK801-elicited hyperlocomotion
and by the hyporeactivity to glutamate of a subpopulation of medium spiny neurons.
In contrast, GR inactivation did not affect rewarding and reinforcing properties of food
suggesting that responding for natural reward under basal conditions is preserved in these
mice.
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INTRODUCTION
Reward processing involves the meso-cortico-limbic system,
which includes dopamine midbrain neurons and their projec-
tions to the caudate putamen (CPu), the nucleus accumbens
(NAc), and the prefrontal cortex (PFC). Both addictive drugs
and natural rewards act on these brain circuits that are likely to
have evolved to motivate vital behaviors, including eating (Kelley
and Berridge, 2002). Indeed, most drugs of abuse food rewards
elicit an increase in DA release within the NAc (Di Chiara and
Imperato, 1988; Hernandez and Hoebel, 1988) thought to partic-
ipate to the encoding of rewarding and reinforcing properties of
food rewards and addictive substances.

Vulnerability to abused drugs varies from one person to
another. This interindividual variability most probably relies on
both genetic and environmental factors, including stress expo-
sure (Sinha, 2001). Similarly, stress exposure has also been shown
to affect food intake and has been associated with feeding dis-
orders (Torres and Nowson, 2007). Stress response triggers a
large set of physiological reactions, including the activation of the
hypothalamo-pituitary-adrenal (HPA) axis, ultimately leading to
the secretion of glucocorticoids (GCs) by the adrenal gland in the
blood flow. GCs activate two related nuclear receptors, the gluco-
corticoid receptor (GR) ubiquitously expressed, including within
neurons of the reward circuitry, and the mineralocorticoid recep-
tor (MR) restricted to more discrete brain regions. Both act as
transcription factors, in the nucleus, to control gene expression
and, at the membrane, participate to the rapid modulation of
neuronal excitability and intracellular signaling cascades. During
stress response MR is involved in the appraisal of novel situa-
tions whereas GR facilitates the consolidation of stress-related
information (Groeneweg et al., 2011).

Clinical studies, supported by compelling animal data, under-
lie the central role of GCs in modulating responses to abused
drugs and feeding behaviors (Marinelli and Piazza, 2002; Dallman
et al., 2004; Sinha et al., 2006; Adam and Epel, 2007). For example,
surgical suppression of circulating GCs in rats decreases locomo-
tor responses to psychostimulants, an effect rescued by hormone
replacement (Marinelli et al., 1997). Similarly, adrenalectomy
have been shown to block the increase of fat intake observed after
fasting in rat and this behavior is restored after corticosterone
treatment (Castonguay, 1991). In addition, chronic GCs treat-
ments in rats have been shown to impair goal-directed behavior
as well as motivation to obtain food reward (Gourley et al., 2012).

We previously developed GRD1Cre and GRDATCre mouse mod-
els. The GRD1Cre mice are deprived of GR in most of medium
spiny neurons and neurons of the basal layers of the cortex (here-
after described as dopaminoceptive neurons) while GRDATCre

mice are deprived of GR in dopamine neurons (Ambroggi et al.,
2009; Barik et al., 2013). The absence of GR in dopaminoceptive
but not dopamine-releasing neurons diminished sensitizing,
rewarding, and reinforcing effects of cocaine (Ambroggi et al.,
2009; Barik et al., 2010). In striking contrast, we showed that mor-
phine responses in both models remained unaltered (Barik et al.,
2010) although stress facilitates opiates effects (Deroche et al.,
1995). While these results suggest a GR-dependent dichotomy
for the regulation of psychostimulant and opiate responses, such
hypothesis still needs to be validated, as GR involvement in

responses to other psychostimulant drugs such as amphetamine
has never been clearly established. In addition, while extensive
work has been made to uncover the role of this receptor in drugs
of abuse-related behaviors, its potential contribution in responses
to food rewards and the neuronal population that may be involved
have yet to be investigated. We therefore, examined the ability of
GR along the DA pathway to modulate behavioral responses to
amphetamine and food rewards. We demonstrated that GR in
dopaminoceptive neurons selectively modulated behavioral and
molecular responses to amphetamine without altering rewarding
and reinforcing properties of food rewards.

MATERIALS AND METHODS
ANIMAL BREEDING AND DRUG TREATMENTS
Nr3c1 (GR) gene inactivation was selectively targeted in
dopaminoceptive (Nr3c1loxP/loxP;(Tg)D1aCre (Lemberger
et al., 2007), hereafter designed GRD1Cre) or dopamine
(Nr3c1loxP/loxP;(Tg)BAC-DATiCrefto (Turiault et al., 2007),
hereafter designed GRDATCre) neurons as described in Ambroggi
et al. (2009). Experimental animals were obtained by mating
Nr3c1loxP/loxP females with either Nr3c1loxP/loxP;Tg:D1aCre or
Nr3c1loxP/loxP;(Tg)BAC-DATiCrefto mice. Half of the progeny
were mutant animals, the other half were control littermates.
Animals were bred and raised under standard animal housing
conditions, at 22◦C, 55–65% humidity, with a 12-h light/dark
cycle (7 am/7 pm) and free access to water and a rodent diet.
All experiments were performed in accordance with French
(Ministère de l’Agriculture et de la Forêt, 87-848) and the
European Directive 2010/63/UE and the recommendation
2007/526/EC for care of laboratory animals. Mice were 2–4
month old males and backcrossed for more than 8 generations
on C57BL/6 genetic background. All the experiments have been
performed within the hours preceding or encompassing the
beginning of dark phase (7 pm), when corticosterone levels are
elevated (Le Minh et al., 2001). The behavioral sensitization
experiments have been carried out from 6 pm to 9 pm; The
CPP experiments from 7 pm to 11 pm and the food progressive
ratio (PR) experiment were performed from 4 pm to 6 pm. All
drugs were dissolved in saline 0.9%. D-amphetamine (freebase;
Sigma-Aldrich, Saint-Quentin Fallavier, France), SKF81297 (salt;
Tocris Cookson, Bristol, UK), and MK801 (salt; Tocris Cookson,
Bristol, UK) were administered intraperitoneally (ip).

LOCOMOTOR ACTIVITY AND SENSITIZATION
Locomotor activity and sensitization were performed as described
in Barik et al. (2010). Briefly, locomotor activity was assessed
in circular chamber (4.5-cm width, 17-cm external diameter)
crossed by four infrared captors (1.5 cm above the base) placed
at every 90◦ (Imetronic, Bordeaux, France). The locomotor activ-
ity was counted when animals interrupted two successive beams
and thus, had travelled a quarter of the circular corridor. Mice
were habituated to the apparatus for 3 h, for 3 consecutive days,
and received a saline injection on days 2 and 3. To assess the
response to SKF81297 or MK801, on day 4 mice were placed in
the apparatus for 90 min before receiving an acute injection of
SKF81297 (1.5 or 3 mg/kg) or MK801 (0.2 mg/kg). In the case of
amphetamine-induced locomotor sensitization, from day 4 to 8,
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mice were daily treated with amphetamine or saline after a 90 min
habituation to the apparatus. Following 8 days of withdrawal,
mice received an acute challenge of amphetamine. The locomo-
tor activity post-injection was acquired for 1 h. For acute drug
responses data are recorded as ¼turn per 5 min. For clarity rea-
son, data are presented every 10 min. For locomotor sensitization,
data are presented as the sum of activity over 1 h.

CONDITIONED PLACE PREFERENCE
The conditioned place preference (CPP) apparatus consisted of
two chambers (20 × 20 × 25 cm) with distinct visual and tactile
cues connected by a neutral area. On day 1 (pre-conditioning),
mice were placed in the neutral area allowed to freely explore the
apparatus for 18 min. The time spent in each chamber was mea-
sured. On days 2, 4, 6, and 8, amphetamine-paired mice received
an amphetamine injection (1 or 2 mg/kg) and were confined to
one chamber for 25 min. On days 3, 5, 7, and 9, amphetamine-
paired mice received saline in the opposite chamber and were
also confined for 25 min. Saline-paired animals received saline in
both chambers. To examine food-induced CPP, mice had limited
access to chow pellet in their home-cage for a week, to stabilize
their bodyweight to 85% of their original weight. Conditioning
for food was similar to that of amphetamine. Food-paired mice
received a chow pellet (1 g; standard food CPP) or chocolate
with cereals (“chocapic,” Nestlé, 0.5 g; palatable food CPP) in the
paired chamber on days 2, 4, 6, 8 and confined for 30 min. On
days 3, 5, 7, 9, mice were confined to the other, unpaired, chamber
but had no access to food. No food-paired mice were alternatively
placed in each chamber with no access to food at any time. During
the post-conditioning (day 10), mice, in absence of any reward,
were allowed to freely explore both chambers for 18 min. The CPP
scores were expressed as the increase of time spent in the paired
chamber between the post- and the pre-conditioning sessions.

PROGRESSIVE RATIO FOR FOOD
Apparatus
The PR experiment took place in 12 home cages containing an
operant conditioning wall (24 × 28 × 28 cm, Operant Behavior
System, TSE, Bad Homburg, Germany). The operant wall had two
retractable levers, a food pellet dispenser delivering 20 mg sucrose
pellets with peanut butter flavor (GlaxoSmithKline, TestDiet,
Richmond, IN, USA) and white light bulbs above the levers and
in the dispenser. The operant walls were covered outside peri-
ods of training and testing. The boxes were covered with a layer
of corn cob bedding and enriched with cotton nest pads. Water
was available ad-libitum. During the period of habituation food
(chow, SAFE, Augy, France) was also available ad-libitum.

Habituation, Training, and Testing
Mice were maintained at 85% of their initial body weight dur-
ing training and testing. We tested 6 control and 6 GRD1Cre

mice. During the habituation period (2 days) mice were placed
in the operant boxes with ad-libitum access to food. The mice
had continuously access to the operant wall and learnt to lever
press for sucrose pellets under a fixed ratio 1 (FR1) schedule
(i.e., a single press on the active lever resulted in the delivery
of one sucrose pellet). Mice were trained on a FR1 schedule

overnight. for 4 days. The FR1 schedule was followed by 6 days
of PR schedule during which the cost of a reward is progres-
sively increased for each following reward in order to determine
the amount of work the mouse is willing to put into obtain-
ing the reward. The response requirement increases incrementally
according to a non-arithmetic progression: 1, 2, 2, 3, 3, 3, 4, 4, 4,
4, 5, . . . etc. and forms the following series: 1, 2, 4, 6, 9, 12, 15, 19,
23, 27, 31, . . . etc. PR sessions were carried out once a day. One
non-responding control mouse was excluded from the analysis.
Breaking point values were defined as the last ratio completed by
the animal followed by 15 min during which no additional reward
was earned.

IMMUNOHISTOCHEMISTRY
Immunohistochemistry was performed as described in Barik et al.
(2010). Briefly, mice were deeply anaesthetized with pentobarbital
(Centravet, France) and transcardially perfused with cold phos-
phate buffer (PB: 0.1 M Na2HPO4/NaH2PO4, pH 7.4), followed
by 4% PFA in PB. Brains were post-fixed overnight in 4% PFA-
PB. Free-floating vibratome sections (30 µm) were rinsed twice
with PBS (20 min) and incubated (30 min) in PBS-BT (PBS 0.5%
BSA, 0.1% Triton X-100) with 10% normal goat serum (NGS).
Sections were incubated (4◦C) in PBS-BT, 1% NGS, with rab-
bit anti-c-Fos (1:500, Abcam, Cambridge, MA) for 36 h. Sections
were rinsed in PBS and incubated (2 h) in goat anti-rabbit
biotinylated secondary antibody (1:1000, Vector Laboratories,
Burlingame, CA) in PBS-BT, 1% NGS. PBS-rinsed sections were
incubated in avidin-biotin-peroxydase complex (ABC reagent;
Vector Laboratories, 1:1000) for 1 h. Signal was revealed using
the peroxidase-substrate-kit-DAB, as recommended by Vector
Laboratories. Quantification of c-Fos immunopositive cells was
done semi-automatically using Mercator Explora-Nova software
(La-Rochelle, France). CPU and NAc regions were delineated
according to Paxino’s mouse brain atlas. For, drug-induced c-
Fos expression, mice received an acute challenge of saline or
amphetamine, and were perfused 1 h later.

MICRO-IONTOPHORESIS AND IN VIVO RECORDINGS
Electrophysiological recordings of NAc medium spiny neurons
were performed during the diurnal phase. The experimenter
was blind to the genotype during recordings. Mice were anes-
thetized with chloral hydrate (5.0 mg/kg, i.p.) and mounted in
a stereotaxic apparatus. The lateral tail vein was catheterized
to administer additional anesthetic or drugs. Body temperature
was monitored and maintained with a heating pad at 36.5–
37.0◦C. Standard electrophysiological procedures were employed.
The electrode signal was amplified 2000 times with an AC high
impedance amplifier, band pass filtered at 0.4–1 kHz (Dagan
2400A, Minneapolis, MN), and digitized with an interface board
at 10 kHz (Digidata 1440A, Axon Instruments Inc., Foster City,
CA) and fed to a computer for offline analysis.

For single unit recordings of NAc medium spiny neurons,
five barrels manufactured electrodes (ASI instruments, Warren,
MI) were pulled and broken to a tip diameter of 8–15 µm.
The center barrel was filled with 2 M NaCl containing 1%
Fast Green dye (impedance 2–6 M�) and was used to record
neuronal activity. One side barrel (impedance 20–60 M�) was
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FIGURE 1 | Impaired molecular but not locomotor responses

following an acute amphetamine challenge in GRD1Cre mice. (A)

Representative example of c-Fos induction in the NAc core of a
control and a GRD1Cre mouse in response to saline, amphetamine 1
and 2 mg/kg. (B) Amphetamine-induced c-Fos expression in the
caudate-putamen (left panel), the nucleus accumbens core (middle
panel), and shell (right panel) of control and GRD1Cre mice. n = 4–8
animals per group; saline vs. drug: ∗P < 0.05; ∗∗P < 0.01; control vs.
mutant: ◦◦P < 0.01. Locomotor activity is expressed as the sum of ¼
turns in a circular cylinder per 5 min following acute drug (gray or
black) or saline (white) injections in control (circles), GRDATCre

(diamonds), and GR1Cre (squares) mice. (C) Similar locomotor response
to a single injection of saline and amphetamine (1 mg/kg) in control
and GRDATCre mice. Interaction Drug × Time F(29, 840) = 7.9,
P < 0.001, with no genotype effect F(1, 420) = 1.3, P > 0.05. (D)

Control and GRD1Cre mice equally respond to an acute 1 mg/kg of
amphetamine. Interaction Drug × Time F(87, 780) = 1.7, P < 0.001,
with no genotype effect F(1, 656) = 0.1, P > 0.05. (E,F) Amphetamine
(2 mg/kg) induced a robust increase in locomotor response regardless
of the genotype in control and GRDATCre mice [(E), no genotype
effect F(1, 637) = 0.3, P > 0.05] and control and GRD1Cre mice [(F),
no genotype effect F(1, 686) = 0.8, P > 0.05].
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filled with 150 mM NaCl for automatic current balancing. The
other barrels were filled with L-glutamate (100 mM, pH 8),
which was ejected as an anion. A retaining current (5–10 nA)
was applied during non-ejection periods to minimize passive
diffusion.

Electrodes were lowered in the NAc as followed: AP+1.1/+1.7,
L+0.6/1.2 and DV−3.9/−5.0 mm from the cortical surface.
Because most NAc neurons are quiescent in the basal state, glu-
tamate was ejected by micro-iontophoresis while searching for
neurons. Once a neuron was detected, the stability of the signal to
noise ratio and waveform characteristics were assessed. Recorded
neurons were identified as medium spiny neurons NAc neurons
by their anatomical location and waveform durations comprised
between 1.1 and 1.8 ms (White, 1996; Kish et al., 1999; Mallet
et al., 2005). To generate current-response curves, glutamate was
ejected by micro-iontophoresis using escalating currents applied
in 15 s pulses interspersed with 15 s of non-ejection periods.

STATISTICS
Data are presented as means ± s.e.m. Statistical analysis was car-
ried out using Two-Way analysis of variance (ANOVA) for CPP,
drug-elicited c-Fos induction. Acute locomotor responses and
locomotor sensitization experiments were analyzed with Three-
Way ANOVA with repeated measures. Post-hoc Bonferroni’s test
or Dunnett’s for multiple comparison tests were used when
appropriate.

RESULTS
ACUTE NEURONAL AND BEHAVIORAL RESPONSES TO AMPHETAMINE
IN MICE DEPRIVED OF GR GENE WITHIN THE MESO-CORTICO-LIMBIC
DOPAMINE SYSTEM
We studied neuronal activation upon amphetamine response
by quantifying c-Fos expression in mutant and control litter-
mates. Consistent with previous findings (Moratalla et al., 1996),
amphetamine (1 and 2 mg/kg) elicited a significant increase in
the number of c-Fos-positive cells within the CPu and the NAc
core and shell of control animals (Figures 1A,B). This effect was
significantly diminished within the NAc subdivisions and dis-
played a trend toward a decrease in the CPu when GRD1Cre

mice were administered 1 mg/kg of the drug (Figures 1A,B).
No significant genotype difference was observed when animals
were administrated a higher dose (2 mg/kg) of amphetamine
(Figures 1A,B). These results indicate a hyporesponsiveness of
the NAc of GRD1Cre mice to low doses of amphetamine.

In many species including rodents, psychostimulant injection
triggers a typical increase in locomotor responses. Thus, loco-
motor activity of GRD1Cre mice and their control littermates
was measured following acute amphetamine administration. To
ascertain the lack of involvement of GR in dopamine-releasing
neurons we also examined responses in GRDATCre mice and
their respective controls. While saline injection failed to produce
any locomotor hyperactivity, amphetamine increased locomo-
tor activity in control mice with a stronger response at 2 mg/kg
compared to 1 mg/kg (Figures 1C–F). The locomotor response
to single amphetamine injection was the same in both GRDATCre

(Figures 1C,D) and GRD1Cre mice (Figures 1E,F) compared to
their respective control littermates, for both doses tested. Thus,

FIGURE 2 | The locomotor sensitization to low dose of amphetamine

is selectively abolished in GRD1Cre mice. Locomotor activity is expressed
as the sum of ¼ turns in a circular cylinder per hour following repeated
drug or saline injections. (A) Locomotor sensitization to 1 mg/kg
amphetamine daily injections in control (gray circles) and GRD1Cre mice
(black squares). White circles and white squares represent control and
GRD1Cre mice, respectively, which received daily injections of saline
followed by a challenge injection of amphetamine 1 mg/kg on the test day.
Amphetamine (1 mg/kg) induced locomotor sensitization that was abolished
in GRD1Cre mice at day 16; interaction Genotype × Treatment F(1, 28) = 5.2;
saline vs. drug: P < 0.01; control vs. mutant: ∗∗P < 0.01. (B) Locomotor
sensitization to 1 mg/kg amphetamine daily injections in control (gray
circles) and GRDATCre (black diamond) mice. White circles and white
squares represent control and GRDATCre mice, respectively, which received
daily injections of saline followed by a challenge injection of amphetamine
1 mg/kg following an 8-day withdrawal period. Interaction Genotype ×
Treatment F(1, 33) = 0.16; saline vs. drug: P < 0.001; control vs. mutant:
P = 0.6. (C,D) are same than (A,B), respectively, but with 2 mg/kg
amphetamine. n = 8–10 per group. (C) Interaction Genotype × Treatment
F(1, 36) = 1.72; saline vs. drug: P < 0.001; control vs. mutant: P = 0.67. (D)

Interaction Genotype × Treatment F(1, 37) = 0.27; saline vs. drug:
P < 0.001; control vs. mutant: P = 0.21.

the absence of GR in dopaminoceptive neurons does not alter the
acute behavioral response to amphetamine.

THE ABSENCE OF GR IN DOPAMINOCEPTIVE NEURONS DECREASES
THE SENSITIVITY TO LOCOMOTOR SENSITIZING PROPERTIES OF
AMPHETAMINE
One of the key features of abused drugs is their ability to trig-
ger locomotor sensitization (Vanderschuren and Pierce, 2010),
i.e., a progressive and enduring augmentation in locomotor activ-
ity following repeated drug injection. We assessed the sensitizing
properties of amphetamine in GRD1Cre and GRDATCre mice, and
respective control littermates. Five consecutive daily injections
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of amphetamine (1 mg/kg), but not saline, induced significant
locomotor sensitization in control mice, which was still persis-
tent following an 8-day withdrawal period (Figures 2A,B). In
contrast GRD1Cre mice failed to develop locomotor sensitization
(Figure 2A) whereas the absence of GR in dopamine neurons
(GRDATCre mice) had no effect (Figure 2B). When tested at a
higher dose (2 mg/kg), amphetamine induced a more robust
locomotor sensitization that was similar in both mutant lines
and their respective control littermates (Figures 2C,D). Hence,
GR within dopaminoceptive neurons is selectively required for
enabling locomotor sensitization to low doses of amphetamine.
This suggests that elevated doses of amphetamine are likely to
provoke stronger molecular activations that hence may overcome
GR’s modulatory effects.

THE ABSENCE OF GR IN DOPAMINOCEPTIVE NEURONS DECREASES
THE SENSITIVITY TO REWARDING PROPERTIES OF AMPHETAMINE
Repeated pairings of abused drugs in a specific environment
triggers reward-associated memories (Kelley, 2004) thought to
reflect changes in the motivational state of the subject (Bardo
and Bevins, 2000). We next studied amphetamine CPP, a com-
monly employed context-dependent paradigm, to measure the
effects of rewarding stimuli in GR mutant animals. On the pre-
conditioning day, all four groups of animals spent similar amount
of time in the two distinct chambers (Figure 3A). Pairing injec-
tions of 1 or 2 mg/kg of amphetamine produced a significant CPP
in control mice (Figures 3B,C). Mirroring the results obtained
for locomotor sensitization, these rewarding effects were abol-
ished in GRD1Cre mice at the lowest dose of amphetamine tested,
but were not significantly different from controls when the dose
was increased up to 2 mg/kg (Figure 3B). The absence of GR in
pre-synaptic dopamine neurons had no effect as GRDATCre mice
displayed normal CPP to 1 mg/kg amphetamine (Figure 3C).

ABNORMAL LOCOMOTOR RESPONSE TO NMDA ANTAGONIST IN
ABSENCE OF GR IN DOPAMINOCEPTIVE NEURONS
In response to abused drugs, the increase of dopamine release
within the CPu and NAc is thought to filter and selectively
reinforce connections arising from excitatory corticostriatal pro-
jections (Bamford et al., 2004). Hence this dopamine/glutamate
interaction is key to shape medium spiny neurons responsiveness
at both electrophysiological and molecular levels, with a cen-
tral implication of D1 dopamine receptors and NMDA glutamate
receptors in these processes (Nicola et al., 2000; Pascoli et al.,
2011). We therefore, examined whether GR gene inactivation
within dopaminoceptive neurons could impact on dopamine
and glutamate receptor functions that may explain the observed
phenotype. To challenge D1 dopamine receptor, we injected
SKF81297, a selective D1-like receptor agonist and measured sub-
sequent locomotor responses. As previously reported (Corvol
et al., 2007), acute systemic SKF81297 injection elicited hyper-
locomotion in control animals (Figure 4A). At the 2 doses exam-
ined (1.5 and 3 mg/kg), GRD1Cre mice did not differ from their
respective control littermates (Figure 4A) ruling out an impaired
functionality of D1 dopamine receptors. To determine the state
of glutamate transmission in GRD1Cre mice, we then assessed
the ability of MK801, a non-competitive NMDA antagonist, to

elicit hyperlocomotion (Qi et al., 2008). Systemic injection of
MK801 (0.2 mg/kg) triggered a robust hyperlocomotion in con-
trols that was significantly decreased in mutant mice (Figure 4B).
Therefore, this set of experiments suggests that the impaired glu-
tamate response may play a role in the diminished response to
amphetamine.

DECREASED RESPONSIVENESS TO GLUTAMATE IN A SUBPOPULATION
OF MEDIUM SPINY NEURONS WITHIN THE NUCLEUS ACCUMBENS OF
GRD1CRE MICE
Altered glutamatergic neurotransmission within the NAc might
contribute to the impaired behavioral responses to amphetamine
and MK801 as well as to the decrease of accumbal c-Fos induction
observed in GRD1Cre mice. To investigate the functional effects
of GR inactivation on glutamatergic neurotransmission within
the NAc, we analyzed the reactivity to glutamate of NAc medium
spiny neurons. We performed in-vivo recordings of NAc medium
spiny neurons coupled to glutamate micro-iontophoresis in con-
trol and GRD1Cre mice. For each neuron, incremental glutamate
ejection currents were applied until the neuron reached its max-
imal firing frequency. In control mice, the maximal frequencies
observed were normally-distributed, ranging from 7 to 17 Hz
(Figures 5A–C). In contrast in GRD1Cre mice, the distribution was
bimodal: one population had maximal frequencies in a range sim-
ilar to that observed in control mice, whereas another population
was shifted toward lower frequencies; these neurons were unable
to fire above 6 Hz. The analysis of the dose-response functions
revealed that the EC50 was similar between controls, fast and slow
neurons (Figure 5D). We found no evidence of anatomical segre-
gation of fast and slow neurons; in particular, they were found
equally in the core and the shell (P > 0.05). This experiment
shows that GR positively controls the reactivity to glutamate of
a subset of NAc medium spiny neurons.

UNALTERED RESPONSES TO FOOD REWARDS IN GRD1CRE MICE
As the processing of natural rewards and addictive drugs acti-
vate overlapping pathways, we sought to determine whether
GR gene inactivation in dopaminoceptive neurons resulted in
a general impairment of natural reward-seeking. As we did for
amphetamine, we first tested control and mutant mice in two
CPP experiments in response to normal (chow pellets) or palat-
able (chocolate) food. Mice were exposed for 30 min to either
food in the paired chamber and spent the same amount of time,
without food, in the opposite (unpaired) chamber on alternate
days. Following 8 days of conditioning, the time increase in the
paired chamber was used as an index of place preference. Both
normal and palatable food elicited significant CPP in control
animals. However, unlike our results with amphetamine, CPP
remained unaltered in GRD1Cre mice (Figures 6A,B respectively).

Next, as GR inactivation within dopaminoceptive neurons
has been reported to decrease motivation for cocaine in a PR
schedule (Ambroggi et al., 2009), we thus, tested motivation of
GRD1Cre mice to respond instrumentally for food rewards. During
initial instrumental training, under a fixed-ratio1 schedule, con-
trol and GRD1Cre mice did not show significant differences in
the number of responses (Figure 6C) and ate similar amount
of pellets (control: 6.04 ± 0.29 g, GRD1Cre: 6.3 ± 0.23 g). During
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FIGURE 3 | GRD1Cre mice show a decreased sensitivity to amphetamine

rewarding properties. CPP scores represent the time difference between
post-conditioning and pre-conditioning phases that mice spent in the
reward-paired chamber. (A) Time spent in each chamber of the CPP
apparatus by control (gray bars) and GRD1Cre mice (black bars), during the
pre-conditioning phase. (B) CPP to amphetamine 1 and 2 mg/kg in control

and GRD1Cre mice. CPP induced by amphetamine (1 mg/kg) differed in control
and GRD1Cre mice. Interaction Drug × Genotype F(1, 39) = 4.5, P < 0.05. (C)

Amphetamine (1 mg/kg)-induced comparable CPP in both control and
GRDATCre mice. No interaction Drug × Genotype F(1, 35) = 1.1, P > 0.05. ns:
non-significant, ∗P < 0.05; ∗∗P < 0.01; control vs. mutant: ◦◦P < 0.01.
n = 8–12 mice per group.

FIGURE 4 | Normal D1-like dopamine receptor agonist induced

locomotor activity, but impaired MK801-elicited hyperlocomotion in

GRD1Cre mice. Locomotor responses are presented as ¼ turn per
5 min. (A) Locomotor response to saline and SKF81297 1.5 mg/kg (left
panel) and 3 mg/kg (right panel) in control and GRD1Cre mice. Interaction
Drug × Time for SKF81297 at 1.5 mg/kg [F(17, 714) = 10.3, P < 0.001]

and 3 mg/kg [F(17, 714) = 9.4, P < 0.001], but no interaction Drug ×
Time × Genotype, F(17, 714) = 1.2, P > 0.05 and F(17, 714) = 0.8,
P > 0.05, respectively. (B) MK801 elicited a stronger hyperlocomotion in
control than GRD1Cre mice, interaction Drug × Time × Genotype,
F(18, 756) = 1.9, P < 0.01. ◦◦P < 0.01, control vs. mutant. n = 8–14 mice
per group.

the learning phase of the PR schedule (where the response-
requirement increased after each reward obtained), control and
mutant mice exhibited a comparable increase in their responding
for food (Figure 6D left panel). Analysis of the breaking points
(defined as the last ratio completed by the animal followed by
15 min during which no additional reward was earned) revealed
no difference between controls and GRD1Cre mice (Figure 6D
right panel). While during initial instrumental training GRD1Cre

mice showed a trend toward a decrease in instrumental responses
compared to controls, the opposite was rather observed dur-
ing the last two sessions of PR. This set of data suggests that

GR in dopaminoceptive neurons does not modulate food reward
responses.

DISCUSSION
In this study, we aimed at dissecting the modulatory role of GR
within the meso-cortico-limbic dopamine system, on responses
to amphetamine and food rewards. We showed that inactiva-
tion of GR gene in dopaminoceptive cells, but not in dopamine
cells, decrease amphetamine-mediated locomotor sensitization
and CPP, two behavioral features of psychostimulants. Along
with these behavioral deficits, absence of GR in dopaminoceptive
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FIGURE 5 | Reduced glutamate induced-firing in a sub-population of

NAc neurons in GRD1aCre mice. (A) Individual maximal frequencies
reached after micro-iontophoretic application of glutamate in NAc neurons
(n = 22 cells in 13 control mice and n = 20 in 11 GRD1Cre mice). (B) The
distribution of maximal frequencies after glutamate application was normal
in control mice (Shapiro–Wilk test, W = 0.96, p = 0.58) and bimodally
distributed in GRD1Cre mice (Shapiro–Wilk test, W = 0.82, p < 0.002). (C)

Glutamate dose response in NAc neurons from control mice (black bars)
and in the two populations of NAc neurons found in GRD1Cre mice.
Slow-firing neurons recorded in GRD1Cre mice differed from the two other
populations [dose population interaction F(20, 390) = 5.47, p < 0.0001].
∗P < 0.001 for GRD1Cre slow vs. GRD1Cre high, #P < 0.001 for GRD1Cre

slow vs. control. (D) The EC50 of the 3 populations of neurons did not
differ [F(2, 39) = 0.72, p = 0.49].

cells decreased the post-synaptic response to amphetamine
within the NAc as assessed by c-Fos immunostaining. These
changes in behavioral and post-synaptic neuronal activation to
amphetamine may involve abnormal glutamate transmission as
mice deprived of GR in dopaminoceptive neurons showed a
decrease in locomotor response to NMDA receptor antagonist
MK801 and a decrease in neuronal response to intra-accumbal
glutamate administration. These results extend our previous find-
ings which showed that inactivation of GR in the same cell pop-
ulation dampens behavioral and molecular responses to cocaine,
another psychostimulant drug (Ambroggi et al., 2009; Barik et al.,
2010). These modulatory effects of GR appear to be selective to
psychostimulants as neither morphine (Barik et al., 2010) nor
food reward responses (the present study) are affected by the
inactivation of GR gene in the meso-cortico-limbic dopamine
system.

While a body of evidence suggest that stress reaction, as
well as GCs, facilitate behavioral responses to amphetamine, the
brain regions targeted by GCs actions remained to be identified.
Furthermore, the determination of the receptor type involved
is still a matter of debate. Although pharmacological antago-
nism of GR, using the antagonist RU486, has been shown to
decrease amphetamine-induced locomotor sensitization without
changing the acute locomotor response to the drug (De Vries
et al., 1996), systemic administration of GR agonist dexametha-
sone decreased amphetamine induced hyperactivity (Capasso

et al., 1996). These confounding results are however difficult to
interpret as the RU486 is also a potent progesterone receptor
antagonist (Cadepond et al., 1997), and dexamethasone, when
injected systemically, is actively expelled from the brain compart-
ment, hence substantially limiting its effects (Meijer et al., 1998).
Systemic dexamethasone may have resulted in a depletion of
endogenous GCs levels via the negative feedback exerted by acti-
vation of GR in the pituitary gland. The response to amphetamine
has also been studied in a transgenic mouse model expressing a
neurofilament promoter-driven antisense RNA complementary
to a fragment of cDNA that codes for the mouse GR. In this
model, GR mRNA levels are decreased by 50% on average in
the brain (Pepin et al., 1992). An enhanced locomotor response
to amphetamine in this model suggested that GR may decrease
sensitivity to this drug (Cyr et al., 2001). However, disturbances
in HPA axis function, including elevated levels of adrenocorti-
cotropin hormone and GCs and a lack of diurnal variation in
HPA axis activity may have led to confounding effects (Beaulieu
et al., 1994). The fact that selective ablation of GR from dopamine
neurons had no effect on behavioral responses to amphetamine is
in coherence with the absence of effects we previously observed
on behavioral responses to cocaine and on spontaneous firing of
dopamine neurons (Ambroggi et al., 2009; Barik et al., 2010). We
believe that the reduced behavioral responses to amphetamine
observed in GRD1Cre mice result from the absence of GR in
dopaminoceptive neurons. Indeed, although expression of D1
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FIGURE 6 | Unaltered responses to food reward in GRD1Cremice. CPP
scores represent the time difference between post-conditioning and
pre-conditioning phases that mice spent in the reward-paired chamber. (A)

Control and GRD1Cre mice show similar levels of CPP when normal chow
pellet were use as a conditioning stimulus. Effect of Food F(1, 33) = 4.4,
P < 0.05, but no effect of genotype F(1, 33) = 0.9, P > 0.05. (B) Similar
responses were also obtained when control and GRD1Cre mice were paired
with palatable food, which significantly increased the time spent in the paired

chamber [F(1, 35) = 45.8, P < 0.001] regardless of the genotype
[F(1, 35) = 0.9, P > 0.05]. (C) In operant chambers, both control and GRD1Cre

mice exhibited similar responses for palatable food reward either under a
fixed ratio 1 schedule [no effect of genotype F(1, 40) = 0.8, P > 0.05], or (D) a
more stringent progressive ratio schedule [no effect of genotype,
F(1, 60) = 0.9, P > 0.05]. For CPP n = 8–12 mice per group and for operant
responding for palatable food n = 6 mice per group. ns: non-significant
∗P < 0.05, ∗∗P < 0.01.

receptor have been reported in peripheral tissues, (Ozono et al.,
1997) the potential GR gene recombination in the periphery in
GRD1cre mice does not alter HPA-axis activity (Ambroggi et al.,
2009) and is unlikely to alter amphetamine metabolism.

Strikingly, GR in dopaminoceptive neurons appears to modu-
late behavioral responses to low (1 mg/kg) but not high (2 mg/kg)
doses of amphetamine. This effect has been observed for both
locomotor sensitization and CPP. In rats, it was reported that the
environmental changes in housing conditions, which differently
shape the HPA axis, only affected the reinforcing properties of low
doses of amphetamine, suggesting that the environment modifies
the threshold for positive hedonic effects of amphetamine (Bardo
et al., 2001; Green et al., 2002; Stairs et al., 2011). Altogether,
these data suggest that stress-induced GCs release increases the
sensitivity to reinforcing, rewarding, and sensitizing properties of
amphetamine for moderate doses and this effect could be at least
partially mediated through activation of GR within dopamine-
targeted areas. In addition to these behavioral effects, we also
observed a decrease in the induction of c-Fos by amphetamine

specifically within the NAc of GRD1Cre mice. An acute cocaine
injection has been previously shown to predominantly (but not
exclusively) induce c-Fos in D1-expressing medium spiny neu-
rons (Bertran-Gonzalez et al., 2008). We might expect a similar
pattern of induction in response to amphetamine. Despite the
decreased neuronal response to amphetamine, their acute loco-
motor response was unaltered compared to controls. Such appar-
ent contradiction can however be partially resolved. A previous
study showed that complete absence of c-Fos in D1-expressing
neurons, obtained by conditional gene inactivation, does not alter
the marked locomotor response to an acute injection of the D1-
like agonist SKF81297. It also has no effect on the acute locomotor
response to a moderate (10 mg/kg) dose of cocaine but does
impair locomotor sensitization (Zhang et al., 2006). Thus, c-Fos
induction in dopamine-innervated areas is not necessary to build
an acute locomotor response to moderate doses of psychostimu-
lant drugs but seems crucial for the development of sensitizing
effects. In the present study we did not investigate for c-Fos
induction after repeated injection of amphetamine. However, we
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have previously shown that repeated administration of cocaine
leads to a sensitization of c-Fos mRNA induction specifically in
the CPu and motor cortex and that this sensitization was abol-
ished in mice lacking GR in the whole central nervous system
(Deroche-Gamonet et al., 2003).

Decreased behavioral and post-synaptic responses to
amphetamine observed in GRD1Cre mice were unlikely due to
alterations in post-synaptic dopamine D1-mediated signaling
as these mice showed similar responses to dopamine D1-like
receptor agonists SKF81297 compared to controls. In contrast,
we showed that the absence of GR in dopaminoceptive neurons
dampened locomotor responses to MK801, a NMDA receptor
antagonist. Given that c-Fos induction by amphetamine is
specifically dampened in the NAc, this suggests that glutamate
neurotransmission could potentially be impaired within this
brain region. This is confirmed by our electrophysiological data.
In GRD1Cre mice, about half of NAc medium spiny neurons
were found to be less reactive to glutamate while the remaining
neurons had normal responses. Medium spiny neurons in both
CPu and NAc can be segregated in two neuronal populations
expressing either D1 or D2 dopamine receptors with some
overlap between these two populations (Bertran-Gonzalez et al.,
2010). The bimodal distribution could therefore be the result
of this segregation. However, GRD1Cre mice are likely to be
recombined in both populations (Barik et al., 2013), potentially
because of transient developmental expression of the D1 receptor.
GR may differentially regulate glutamate reactivity in D1- or D2-
expressing neurons and future studies will be needed to directly
test this hypothesis. The alteration of glutamate neurotrans-
mission within the NAc could explain the decreased responses
to psychostimulants, which also largely relies on glutamate
transmission (Kalivas, 2000). A body of evidence suggests that
GR can modulate glutamate transmission in the brain (Popoli
et al., 2012). In addition, in a previous study, microarray and
RT-qPCR revealed changes in the expression of NMDA receptor
subunits and in AMPA/kainate signaling pathways within the
striatum of GRD1Cre mice (Barik et al., 2010). These changes
could account for the alteration of glutamate neurotransmission
in these mice.

This study, as well as our previous work, clearly demonstrate
that the absence of GR in dopaminoceptive neurons diminish
reinforcing, rewarding, and sensitizing effects of psychostim-
ulants. As the same brain circuits are involved in behavioral
responses to abused drugs and natural rewards, we also inves-
tigated the effect of inactivating GR within dopaminoceptive
cells on the hedonic reactions to food reward (either regular
chow or palatable food) in a CPP paradigm and on the willing-
ness to expend effort to obtain a food reward in a progressive
ratio task. Both meso-accumbens and nigro-striatal dopamine
pathways have been involved in the modulation of motivation
and decision-making processes essential to reach a goal (Schultz,
2006; Wise, 2008). Moreover, deficits in motivation are hall-
mark features of many psychiatric disorders including depression
for which stress exposure is an important environmental risk
factor. A recent study in rat showed that chronic stress expo-
sure impairs the sensitivity to changes in outcome value and
in response-outcome contingency suggesting that chronic stress

exposure might induce deficits in reward expectation (Dias-
Ferreira et al., 2009). Along with these deficits, structural changes
in prefrontal areas and in the dorsal striatum have been observed
suggesting that stress exposure may lead to goal-directed behav-
ior impairments by altering cortico-striatal circuits (Dias-Ferreira
et al., 2009). Interestingly, these results were mimicked by chronic
GCs administration. Indeed, chronic GCs treatments have been
shown to impair goal-directed response-outcome associations
as well as motivation to obtain food reward in a PR sched-
ule. On the other side, acute pharmacological blockade of GR
only impaired response-outcome association sparing motivation
(Gourley et al., 2012). Surprisingly, we did not find any differ-
ence between GRD1Cre mice and control littermates in both CPP
and PR tasks suggesting that GR in this cell population may not
be necessary to modulate rewarding and reinforcing properties of
food as it is for psychostimulant drugs. In GRD1Cre mice, most
of striatal and NAc neurons show an inactivation of GR. Indeed,
GR ablation was observed in more than 85% of striatal neurons.
However, within the cortex, only neurons located within deep lay-
ers (V/VI) exhibit a percentage of recombination comparable to
that of striatal neurons, while most of neurons from upper layers
still express GR (Barik et al., 2013). Thus, the effects of stress and
GCs on goal-directed behavior and motivation might be rather
mediated by an impact at the level of the PFC rather than the
striatum or the NAc. Another possibility is that the inactivation
of GR in dopaminoceptive neurons may protect from deleterious
effects of chronic stress exposure rather than having an effect at
basal stress levels. Further studies will be required to explore these
hypotheses.

Our findings along with previous studies show that GR
in dopaminoceptive neurons selectively modulates reinforcing,
rewarding, and sensitizing properties of psychostimulant drugs
such as cocaine and amphetamine. These effects seem mediated
by alterations of integration of glutamate signaling within the
striatum and NAc. On the other side, behavioral responses to food
remained unchanged in the absence of GR within dopaminocep-
tive neurons. These results could be interesting in the context of
the development of new medications able to decrease sensitiv-
ity to abused drugs while sparing general motivation for natural
reinforcers.
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