48 research outputs found

    Thermic effect of glucose and amino acids in man studied by direct and indirect calorimetry

    Get PDF
    1. In order to reinvestigate the classical concept of specific dynamic action of food, the thermic effect of ingested glucose (50 g) or essential amino acids (50 g) or both was measured in seven healthy male subjects dressed in shorts, by using both direct and indirect calorimetry simultaneously. Experiments were performed under conditions of thermal comfort at 28°. 2. Energy ‘balance' (heat production minus heat losses) was negative during the control period (mean heat deficit: −16.0 ± 0.8 kJ/m2 per h. 3. Metabolic rate increased 13.6 ± 1.8% after the glucose load, 17.2 ± 1.4% after amino acids, and 17.3 ± 2.9% after both glucose and amino acids: thus there was no additive thermic effect when both nutrients were given together. 4. In contrast to the metabolic rate, heat losses were not significantly altered after nutrient ingestion; consequently, the energy ‘balance' became rapidly positive. 5. These results show that: (a) the food-induced thermogenesis, for a moderate energy intake, is less dependent on the nature of the nutrients than was classically admitted; (b) this increased heat production mainly induces changes in heat storage rather than in heat losses during the first hours following ingestion of a mea

    Thermic effect of glucose in obese subjects studied by direct and indirect calorimetry

    Get PDF
    1. The thermic effect of a glucose load (50 g) was studied in ten control and eleven obese female subjects, using both direct and indirect calorimetry simultaneously. Experiments were done under conditions of thermal equilibrium (28° and 30% relative humidity).. 2. Thermal balance (heat production measured by indirect calorimetry minus heat losses measured directly) was negative in the control group during the fasting period (heat deficit - 14.2 ± 5.0 kJ/m2 per h), whereas that of the obese group was in equilibrium (+ 1.4 ± 4.8 kJ/m2 per h).. 3. After the glucose load, metabolic rate increased 13.0 ± 1.5 and 5.2 ± 1.3% in the control and obese groups respectively.. 4. In contrast to the metabolic rate, total heat losses were not significantly altered in either group after the glucose load. Total heat losses of the obese group were significantly lower than those of the control group throughout the experimental period.. 5. During the experiments the amount of heat stored was increased in both groups. Thermal balance in the control group became positive while that of the obese group remained positive.. 6. During the fasting period, the control subjects oxidized more carbohydrates (90.4 mg/min) than lipids (68.8 mg/min), whereas obese subjects oxidized more lipids (103.7 mg/min) than carbohydrates (50.2 mg/min). After the glucose load, the oxidation rate of carbohydrates was increased in both groups to 158.1 mg/min in control subjects and 95.6 mg/min in obese subjects.. 7. The mean skin temperature of the control subjects was significantly higher than that of the obese subjects and remained higher throughout the postprandial period.. 8. These results indicate that: (a) during the fasting period, the energy sources utilized and the thermal balance of the two groups were different; (b) the thermic effect of glucose was less in the obese subjects and, therefore, might be a factor contributing to their low energy expenditur

    Metabolic effects of a mixed and a high-carbohydrate low-fat diet in man, measured over 24 h in a respiration chamber

    Get PDF
    1. The relation between dietary carbohydrate:lipid ratio and the fuel mixture oxidized during 24 h was investigated in eleven healthy volunteers (six females, and five males) in a respiration chamber. Values of the fuel mixture oxidized were estimated by continuous indirect calorimetry and urinary nitrogen measurements. 2. The subjects were first given a mixed diet for 7 d and spent the last 24 h of the 7 d period in a respiration chamber for continuous gas-exchange measurement. The fuels oxidized during 2·5 h of moderate exercise were also measured in the respiration chamber. After an interval of 2 weeks from the end of the mixed-diet period, the same subjects were given an isoenergetic high-carbohydrate low-fat diet for 7 d, and the same experimental regimen was repeated. 3. Dietary composition markedly influenced the fuel mixture oxidized during 24 h and this effect was still present 12 h after the last meal in the postabsorptive state. However, the diets had no influence on the substrates oxidized above resting levels during exercise. With both diets, the 24 h energy balance was slightly negative and the energy deficit was covered by lipid oxidation. 4. With the high-carbohydrate low-fat diet, the energy expenditure during sleep was found to be higher than that with the mixed diet. 5. It is concluded that: (a) the composition of the diet did not influence the fuel mixture utilized for moderate exercise, (b) the energy deficit calculated for a 24 h period was compensated by lipid oxidation irrespective of the carbohydrate content of the diet, (c) energy expenditure during sleep was found to be higher with the high-carbohydrate low-fat diet than with the mixed die

    Onset of the Thermic Effect of Feeding (TEF): a randomized cross-over trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The purpose of this investigation was to identify the onset of the thermic effect of feeding (TEF) after ingestion of a high carbohydrate (CHO) and a high protein (PRO) 1255 kJ (300 kcal) drink.</p> <p>Methods</p> <p>Resting metabolic rate (RMR) and TEF were measured over 30-minute periods via indirect calorimetry using a ventilated hood technique. Eighteen subjects (7 men and 11 women) completed two randomized, double-blind trials. Data were collected in 1-minute measurement intervals. RMR was subtracted from TEF and the time of onset was obtained when two consecutive data points exceeded 5% and 10% of resting metabolic rate.</p> <p>Results</p> <p>At 5% above RMR the onset of TEF for CHO was 8.4 ± 6.2 minutes and was not different as compared to PRO, 8.6 ± 5.2 minutes (p = 0.77). Likewise, no differences were found with a 10% increase above RMR: CHO, 14.1 ± 7.5 min; PRO, 16.7 ± 6.7 min (p = 0.36). Several subjects did not show a 10% increase within 30-min.</p> <p>Conclusion</p> <p>We conclude that the onset of TEF is variable among subjects but is initiated within about 5 to 20-min for most subjects after ingestion of a 1255 kJ liquid meal. No differences were found between CHO or PRO liquid meals.</p

    Changes in energy expenditure associated with ingestion of high protein, high fat versus high protein, low fat meals among underweight, normal weight, and overweight females

    Get PDF
    Background: Metabolic rate is known to rise above basal levels after eating, especially following protein consumption. Yet, this postprandial rise in metabolism appears to vary among individuals. This study examined changes in energy expenditure in response to ingestion of a high protein, high fat (HPHF) meal versus an isocaloric high protein, low fat (HPLF) meal in underweight, normal weight, or overweight females (n = 21) aged 19–28 years. Methods: Energy expenditure, measured using indirect calorimetry, was assessed before and every 30 minutes for 3.5 hours following consumption of the meals on two separate occasions. Height and weight were measured using standard techniques. Body composition was measured using bioelectrical impedance analysis. Results: Significant positive correlations were found between body mass index (BMI) and baseline metabolic rate (MR) (r = 0.539; p = 0.017), between body weight and baseline MR (r = 0.567; p = 0.011), between BMI and average total change in MR (r = 0.591; p = 0.008), and between body weight and average total change in MR (r = 0.464; p = 0.045). Metabolic rate (kcal/min) was significantly higher in the overweight group than the normal weight group, which was significantly higher than the underweight group across all times and treatments. However, when metabolic rate was expressed per kg fat free mass (ffm), no significant difference was found in postprandial energy expenditure between the overweight and normal groups. Changes in MR (kcal/min and kcal/min/kg ffm) from the baseline rate did not significantly differ in the underweight (n = 3) or in the overweight subjects (n = 5) following consumption of either meal at any time. Changes in MR (kcal/min and kcal/min/kg ffm) from baseline were significantly higher in normal weight subjects (n = 11) across all times following consumption of the HPHF meal versus the HPLF meal. Conclusion: There is no diet-induced thermogenic advantage between the HPHF and HPLF meals in overweight and underweight subjects. In contrast, in normal weight subjects, ingestion of a HPHF meal significantly increases MR (69.3 kcal/3.5 hr) versus consumption of a HPLF meal and provides a short-term metabolic advantage

    Evaluation of an Antimicrobial L-Amino Acid Oxidase and Peptide Derivatives from Bothropoides mattogrosensis Pitviper Venom

    Get PDF
    Healthcare-associated infections (HAIs) are causes of mortality and morbidity worldwide. The prevalence of bacterial resistance to common antibiotics has increased in recent years, highlighting the need to develop novel alternatives for controlling these pathogens. Pitviper venoms are composed of a multifaceted mixture of peptides, proteins and inorganic components. L-amino oxidase (LAO) is a multifunctional enzyme that is able to develop different activities including antibacterial activity. In this study a novel LAO from Bothrops mattogrosensis (BmLAO) was isolated and biochemically characterized. Partial enzyme sequence showed full identity to Bothrops pauloensis LAO. Moreover, LAO here isolated showed remarkable antibacterial activity against Gram-positive and -negative bacteria, clearly suggesting a secondary protective function. Otherwise, no cytotoxic activities against macrophages and erythrocytes were observed. Finally, some LAO fragments (BmLAO-f1, BmLAO-f2 and BmLAO-f3) were synthesized and further evaluated, also showing enhanced antimicrobial activity. Peptide fragments, which are the key residues involved in antimicrobial activity, were also structurally studied by using theoretical models. The fragments reported here may be promising candidates in the rational design of new antibiotics that could be used to control resistant microorganisms

    Institutional shared resources and translational cancer research

    Get PDF
    The development and maintenance of adequate shared infrastructures is considered a major goal for academic centers promoting translational research programs. Among infrastructures favoring translational research, centralized facilities characterized by shared, multidisciplinary use of expensive laboratory instrumentation, or by complex computer hardware and software and/or by high professional skills are necessary to maintain or improve institutional scientific competitiveness. The success or failure of a shared resource program also depends on the choice of appropriate institutional policies and requires an effective institutional governance regarding decisions on staffing, existence and composition of advisory committees, policies and of defined mechanisms of reporting, budgeting and financial support of each resource. Shared Resources represent a widely diffused model to sustain cancer research; in fact, web sites from an impressive number of research Institutes and Universities in the U.S. contain pages dedicated to the SR that have been established in each Center, making a complete view of the situation impossible. However, a nation-wide overview of how Cancer Centers develop SR programs is available on the web site for NCI-designated Cancer Centers in the U.S., while in Europe, information is available for individual Cancer centers. This article will briefly summarize the institutional policies, the organizational needs, the characteristics, scientific aims, and future developments of SRs necessary to develop effective translational research programs in oncology
    corecore