19 research outputs found

    Novel technologies and emerging biomarkers for personalized cancer immunotherapy

    Get PDF
    The culmination of over a century's work to understand the role of the immune system in tumor control has led to the recent advances in cancer immunotherapies that have resulted in durable clinical responses in patients with a variety of malignancies. Cancer immunotherapies are rapidly changing traditional treatment paradigms and expanding the therapeutic landscape for cancer patients. However, despite the current success of these therapies, not all patients respond to immunotherapy and even those that do often experience toxicities. Thus, there is a growing need to identify predictive and prognostic biomarkers that enhance our understanding of the mechanisms underlying the complex interactions between the immune system and cancer. Therefore, the Society for Immunotherapy of Cancer (SITC) reconvened an Immune Biomarkers Task Force to review state of the art technologies, identify current hurdlers, and make recommendations for the field. As a product of this task force, Working Group 2 (WG2), consisting of international experts from academia and industry, assembled to identify and discuss promising technologies for biomarker discovery and validation. Thus, this WG2 consensus paper will focus on the current status of emerging biomarkers for immune checkpoint blockade therapy and discuss novel technologies as well as high dimensional data analysis platforms that will be pivotal for future biomarker research. In addition, this paper will include a brief overview of the current challenges with recommendations for future biomarker discovery

    Protein kinase activity of phosphoinositide 3-kinase regulates cytokine-dependent cell survival

    Get PDF
    Extent: 14 p.The dual specificity protein/lipid kinase, phosphoinositide 3-kinase (PI3K), promotes growth factor-mediated cell survival and is frequently deregulated in cancer. However, in contrast to canonical lipid-kinase functions, the role of PI3K protein kinase activity in regulating cell survival is unknown. We have employed a novel approach to purify and pharmacologically profile protein kinases from primary human acute myeloid leukemia (AML) cells that phosphorylate serine residues in the cytoplasmic portion of cytokine receptors to promote hemopoietic cell survival. We have isolated a kinase activity that is able to directly phosphorylate Ser585 in the cytoplasmic domain of the interleukin 3 (IL-3) and granulocyte macrophage colony stimulating factor (GM-CSF) receptors and shown it to be PI3K. Physiological concentrations of cytokine in the picomolar range were sufficient for activating the protein kinase activity of PI3K leading to Ser585 phosphorylation and hemopoietic cell survival but did not activate PI3K lipid kinase signaling or promote proliferation. Blockade of PI3K lipid signaling by expression of the pleckstrin homology of Akt1 had no significant impact on the ability of picomolar concentrations of cytokine to promote hemopoietic cell survival. Furthermore, inducible expression of a mutant form of PI3K that is defective in lipid kinase activity but retains protein kinase activity was able to promote Ser585 phosphorylation and hemopoietic cell survival in the absence of cytokine. Blockade of p110α by RNA interference or multiple independent PI3K inhibitors not only blocked Ser585 phosphorylation in cytokine-dependent cells and primary human AML blasts, but also resulted in a block in survival signaling and cell death. Our findings demonstrate a new role for the protein kinase activity of PI3K in phosphorylating the cytoplasmic tail of the GM-CSF and IL-3 receptors to selectively regulate cell survival highlighting the importance of targeting such pathways in cancer.Daniel Thomas, Jason A. Powell, Benjamin D. Green, Emma F. Barry, Yuefang Ma, Joanna Woodcock, Stephen Fitter, Andrew C.W. Zannettino, Stuart M. Pitson, Timothy P. Hughes, Angel F. Lopez, Peter R. Shepherd, Andrew H. Wei, Paul G. Ekert and Mark A. Guthridg

    The Tissue Microlocalisation and Cellular Expression of CD163, VEGF, HLA-DR, iNOS, and MRP 8/14 Is Correlated to Clinical Outcome in NSCLC

    Get PDF
    BACKGROUND: We have previously investigated the microlocalisation of M1 and M2 macrophages in NSCLC. This study investigated the non-macrophage (NM) expression of proteins associated with M1 and M2 macrophages in NSCLC. METHODS: Using immunohistochemistry, CD68(+) macrophages and proteins associated with either a cytotoxic M1 phenotype (HLA-DR, iNOS, and MRP 8/14), or a non-cytotoxic M2 phenotype (CD163 and VEGF) were identified. NM expression of the markers was analysed in the islets and stroma of surgically resected tumours from 20 patients with extended survival (ES) (median 92.7 months) and 20 patients with poor survival (PS) (median 7.7 months). RESULTS: The NM expression of NM-HLA-DR (p<0.001), NM-iNOS (p = 0.02) and NM-MRP 8/14 (p = 0.02) was increased in ES compared to PS patients in the tumour islets. The tumour islet expression of NM-VEGF, was decreased in ES compared to PS patients (p<0.001). There was more NM-CD163 expression (p = 0.04) but less NM-iNOS (p = 0.002) and MRP 8/14 (p = 0.01) expression in the stroma of ES patients compared with PS patients. The 5-year survival for patients with above and below median NM expression of the markers in the islets was 74.9% versus 4.7% (NM-HLA-DR p<0.001), 65.0% versus 14.6% (NM-iNOS p = 0.003), and 54.3% versus 22.2% (NM-MRP 8/14 p = 0.04), as opposed to 34.1% versus 44.4% (NM-CD163 p = 0.41) and 19.4% versus 59.0% (NM-VEGF p = 0.001). CONCLUSIONS: Cell proteins associated with M1 and M2 macrophages are also expressed by other cell types in the tumour islets and stroma of patients with NSCLC. Their tissue and cellular microlocalisation is associated with important differences in clinical outcome

    Feline low-grade alimentary lymphoma: an emerging entity and a potential animal model for human disease

    Get PDF
    Background: Low-grade alimentary lymphoma (LGAL) is characterised by the infiltration of neoplastic T-lymphocytes, typically in the small intestine. The incidence of LGAL has increased over the last ten years and it is now the most frequent digestive neoplasia in cats and comprises 60 to 75% of gastrointestinal lymphoma cases. Given that LGAL shares common clinical, paraclinical and ultrasonographic features with inflammatory bowel diseases, establishing a diagnosis is challenging. A review was designed to summarise current knowledge of the pathogenesis, diagnosis, prognosis and treatment of feline LGAL. Electronic searches of PubMed and Science Direct were carried out without date or language restrictions. Results: A total of 176 peer-reviewed documents were identified and most of which were published in the last twenty years. 130 studies were found from the veterinary literature and 46 from the human medicine literature. Heterogeneity of study designs and outcome measures made meta-analysis inappropriate. The pathophysiology of feline LGAL still needs to be elucidated, not least the putative roles of infectious agents, environmental factors as well as genetic events. The most common therapeutic strategy is combination treatment with prednisolone and chlorambucil, and prolonged remission can often be achieved. Developments in immunohistochemical analysis and clonality testing have improved the confidence of clinicians in obtaining a correct diagnosis between LGAL and IBD. The condition shares similarities with some diseases in humans, especially human indolent T-cell lymphoproliferative disorder of the gastrointestinal tract. Conclusions: The pathophysiology of feline LGAL still needs to be elucidated and prospective studies as well as standardisation of therapeutic strategies are needed. A combination of conventional histopathology and immunohistochemistry remains the current gold-standard test, but clinicians should be cautious about reclassifying cats previously diagnosed with IBD to lymphoma on the basis of clonality testing. Importantly, feline LGAL could be considered to be a potential animal model for indolent digestive T-cell lymphoproliferative disorder, a rare condition in human medicine

    Molecular aspects of multiple myeloma

    No full text
    Multiple myeloma (MM) is a B-cell neoplasm characterized by bone marrow infiltration with malignant plasma cells, which synthesize and secrete monoclonal immunoglobulin (Ig) fragments. Despite the considerable progress in the understanding of MM biology, the molecular basis of the disease remains elusive. The initial transformation is thought to occur in a post-germinal center B-lineage cell, carrying a somatically hypermutated Ig heavy chain (IGH) gene. This plasmablastic precursor cell colonizes the bone marrow, propagates clonally and differentiates into a slowly proliferating myeloma cell population, all under the influence of specific cell adhesion molecules and cytokines. Production of interleukin-6 by stromal cells, osteoblasts and, in some cases, neoplastic cells is an essential element of myeloma cell growth, with the cytokine stimulus being delivered intracellularly via the Jack-STAT and ras signaling pathways. While karyotypic changes have been identified in up to 50% of MM patients, recent molecular cytogenetic techniques have revealed chromosomal abnormalities in the vast majority of examined cases. Translocations mostly involve illegal switch rearrangements of the IGH locus with various partner genes (CCND1, FGFR3, c-maf). Such events have been assigned a critical role in MM development. Mutations in coding and regulatory regions, as well as aberrant expression patterns of several oncogenes (c-myc, ras) and tumor suppressor genes (p16, p15) have been reported. Key regulators of programmed cell death (BCL-2, Fas), tumor expansion (metalloproteinases) and drug responsiveness (topoisomerase II alpha) have also been implicated in the pathogenesis of this hematologic malignancy. A tumorigenic role for human herpesvirus 8 (HHV8) was postulated recently, following the detection of viral sequences in bone marrow dendritic cells of MM patients. However, since several research groups were unable to confirm this observation, the role of HHV8 remains unclear. Translation of the advances in MM molecular biology into novel therapeutic strategies is essential in order to improve disease prognosis
    corecore