140 research outputs found

    Polymorphisms in MTHFR, MS and CBS Genes and Homocysteine Levels in a Pakistani Population

    Get PDF
    Background: Hyperhomocysteinemia (\u3e15 mol/L) is highly prevalent in South Asian populations including Pakistan. In order to investigate the genetic determinants of this condition, we studied 6 polymorphisms in genes of 3 enzymes--methylenetetrahydrofolate reductase (MTHFR, C677T, A1298C), methionine synthase (MS, A2756G), cystathionine-beta-synthase (CBS, T833C/844ins68, G919A) involved in homocysteine metabolism and investigated their interactions with nutritional and environmental factors in a Pakistani population. Methodology/Principal Findings: In a cross-sectional survey, 872 healthy adults (355 males and 517 females, age 18-60 years) were recruited from a low-income urban population in Karachi. Fasting venous blood was obtained and assessed for plasma/serum homocysteine, folate, vitamin B12, pyridoxal phosphate and blood lead. DNA was isolated and genotyping was performed by PCR-RFLP (restriction-fragment-length-polymorphism) based assays. The average changes in homocysteine levels for MTHFR 677CT and TT genotypes were positive [beta(SE beta), 2.01(0.63) and 16.19(1.8) mol/L, respectively]. Contrary to MTHFR C677T polymorphism, the average changes in plasma homocysteine levels for MS 2756AG and GG variants were negative [beta(SE beta), -0.56(0.58) and -0.83(0.99) mol/L, respectively]. The average change occurring for CBS 844ins68 heterozygous genotype (ancestral/insertion) was -1.88(0.81) mol/L. The combined effect of MTHFR C677T, MS A2756G and CBS 844ins68 genotypes for plasma homocysteine levels was additive (p valu

    Unbalanced Holographic Superconductors and Spintronics

    Get PDF
    We present a minimal holographic model for s-wave superconductivity with unbalanced Fermi mixtures, in 2+1 dimensions at strong coupling. The breaking of a U(1)_A "charge" symmetry is driven by a non-trivial profile for a charged scalar field in a charged asymptotically AdS_4 black hole. The chemical potential imbalance is implemented by turning on the temporal component of a U(1)_B "spin" field under which the scalar field is uncharged. We study the phase diagram of the model and comment on the eventual (non) occurrence of LOFF-like inhomogeneous superconducting phases. Moreover, we study "charge" and "spin" transport, implementing a holographic realization (and a generalization thereof to superconducting setups) of Mott's two-current model which provides the theoretical basis of modern spintronics. Finally we comment on possible string or M-theory embeddings of our model and its higher dimensional generalizations, within consistent Kaluza-Klein truncations and brane-anti brane setups.Comment: 45 pages, 15 figures; v2: two paragraphs below eq. (3.1) slightly modified, figure 5 (left) replaced, references added; v3: typos corrected, comments added, figure 12 replace

    Chick Embryo Partial Ischemia Model: A New Approach to Study Ischemia Ex Vivo

    Get PDF
    Background: Ischemia is a pathophysiological condition due to blockade in blood supply to a specific tissue thus damaging the physiological activity of the tissue. Different in vivo models are presently available to study ischemia in heart and other tissues. However, no ex vivo ischemia model has been available to date for routine ischemia research and for faster screening of anti-ischemia drugs. In the present study, we took the opportunity to develop an ex vivo model of partial ischemia using the vascular bed of 4th day incubated chick embryo. Methodology/Principal Findings: Ischemia was created in chick embryo by ligating the right vitelline artery using sterile surgical suture. Hypoxia inducible factor- 1 alpha (HIF-1a), creatine phospho kinase-MB and reactive oxygen species in animal tissues and cells were measured to confirm ischemia in chick embryo. Additionally, ranolazine, N-acetyl cysteine and trimetazidine were administered as an anti-ischemic drug to validate the present model. Results from the present study depicted that blocking blood flow elevates HIF-1a, lipid peroxidation, peroxynitrite level in ischemic vessels while ranolazine administration partially attenuates ischemia driven HIF-1a expression. Endothelial cell incubated on ischemic blood vessels elucidated a higher level of HIF-1a expression with time while ranolazine treatment reduced HIF-1a in ischemic cells. Incubation of caprine heart strip on chick embryo ischemia model depicted an elevated creatine phospho kinase-MB activity under ischemic condition while histology of the treated heart sections evoked edema and disruption of myofibril structures. Conclusions/Significance: The present study concluded that chick embryo partial ischemia model can be used as a novel ex vivo model of ischemia. Therefore, the present model can be used parallel with the known in vivo ischemia models in understanding the mechanistic insight of ischemia development and in evaluating the activity of anti-ischemic drug.status: publishe

    Metabolic Regulation of Invadopodia and Invasion by Acetyl-CoA Carboxylase 1 and De novo Lipogenesis

    Get PDF
    Invadopodia are membrane protrusions that facilitate matrix degradation and cellular invasion. Although lipids have been implicated in several aspects of invadopodia formation, the contributions of de novo fatty acid synthesis and lipogenesis have not been defined. Inhibition of acetyl-CoA carboxylase 1 (ACC1), the committed step of fatty acid synthesis, reduced invadopodia formation in Src-transformed 3T3 (3T3-Src) cells, and also decreased the ability to degrade gelatin. Inhibition of fatty acid synthesis through AMP-activated kinase (AMPK) activation and ACC phosphorylation also decreased invadopodia incidence. The addition of exogenous 16∶0 and 18∶1 fatty acid, products of de novo fatty acid synthesis, restored invadopodia and gelatin degradation to cells with decreased ACC1 activity. Pharmacological inhibition of ACC also altered the phospholipid profile of 3T3-Src cells, with the majority of changes occurring in the phosphatidylcholine (PC) species. Exogenous supplementation with the most abundant PC species, 34∶1 PC, restored invadopodia incidence, the ability to degrade gelatin and the ability to invade through matrigel to cells deficient in ACC1 activity. On the other hand, 30∶0 PC did not restore invadopodia and 36∶2 PC only restored invadopodia incidence and gelatin degradation, but not cellular invasion through matrigel. Pharmacological inhibition of ACC also reduced the ability of MDA-MB-231 breast, Snb19 glioblastoma, and PC-3 prostate cancer cells to invade through matrigel. Invasion of PC-3 cells through matrigel was also restored by 34∶1 PC supplementation. Collectively, the data elucidate the novel metabolic regulation of invadopodia and the invasive process by de novo fatty acid synthesis and lipogenesis

    Pathogenesis of peroxisomal deficiency disorders (Zellweger syndrome) may be mediated by misregulation of the GABAergic system via the diazepam binding inhibitor

    Get PDF
    BACKGROUND: Zellweger syndrome (ZS) is a fatal inherited disease caused by peroxisome biogenesis deficiency. Patients are characterized by multiple disturbances of lipid metabolism, profound hypotonia and neonatal seizures, and distinct craniofacial malformations. Median live expectancy of ZS patients is less than one year. While the molecular basis of peroxisome biogenesis and metabolism is known in considerable detail, it is unclear how peroxisome deficiency leads to the most severe neurological symptoms. Recent analysis of ZS mouse models has all but invalidated previous hypotheses. HYPOTHESIS: We suggest that a regulatory rather than a metabolic defect is responsible for the drastic impairment of brain function in ZS patients. TESTING THE HYPOTHESIS: Using microarray analysis we identify diazepam binding inhibitor/acyl-CoA binding protein (DBI) as a candidate protein that might be involved in the pathogenic mechanism of ZS. DBI has a dual role as a neuropeptide antagonist of GABA(A) receptor signaling in the brain and as a regulator of lipid metabolism. Repression of DBI in ZS patients could result in an overactivation of GABAergic signaling, thus eventually leading to the characteristic hypotonia and seizures. The most important argument for a misregulation of GABA(A) in ZS is, however, provided by the striking similarity between ZS and "benzodiazepine embryofetopathy", a malformation syndrome observed after the abuse of GABA(A) agonists during pregnancy. IMPLICATIONS OF THE HYPOTHESIS: We present a tentative mechanistic model of the effect of DBI misregulation on neuronal function that could explain some of the aspects of the pathology of Zellweger syndrome

    QCD and strongly coupled gauge theories : challenges and perspectives

    Get PDF
    We highlight the progress, current status, and open challenges of QCD-driven physics, in theory and in experiment. We discuss how the strong interaction is intimately connected to a broad sweep of physical problems, in settings ranging from astrophysics and cosmology to strongly coupled, complex systems in particle and condensed-matter physics, as well as to searches for physics beyond the Standard Model. We also discuss how success in describing the strong interaction impacts other fields, and, in turn, how such subjects can impact studies of the strong interaction. In the course of the work we offer a perspective on the many research streams which flow into and out of QCD, as well as a vision for future developments.Peer reviewe
    corecore