2,198 research outputs found

    Computing NodeTrix Representations of Clustered Graphs

    Full text link
    NodeTrix representations are a popular way to visualize clustered graphs; they represent clusters as adjacency matrices and inter-cluster edges as curves connecting the matrix boundaries. We study the complexity of constructing NodeTrix representations focusing on planarity testing problems, and we show several NP-completeness results and some polynomial-time algorithms. Building on such algorithms we develop a JavaScript library for NodeTrix representations aimed at reducing the crossings between edges incident to the same matrix.Comment: Appears in the Proceedings of the 24th International Symposium on Graph Drawing and Network Visualization (GD 2016

    Self-organized Ge nanocrystals embedded in HfAlO fabricated by pulsed-laser deposition and application to floating gate memory

    Get PDF
    2004-2005 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Layer- and Direction-Specific Material Properties, Extreme Extensibility and Ultimate Material Strength of Human Abdominal Aorta and Aneurysm: A Uniaxial Extension Study.

    Get PDF
    Mechanical analysis has the potential to provide complementary information to aneurysm morphology in assessing its vulnerability. Reliable calculations require accurate material properties of individual aneurysmal components. Quantification of extreme extensibility and ultimate material strength of the tissue are important if rupture is to be modelled. Tissue pieces from 11 abdomen aortic aneurysm (AAA) from patients scheduled for elective surgery and from 8 normal aortic artery (NAA) from patients who scheduled for kidney/liver transplant were collected at surgery and banked in liquid nitrogen with the use of Cryoprotectant solution to minimize frozen damage. Prior to testing, specimen were thawed and longitudinal and circumferential tissue strips were cut from each piece and adventitia, media and thrombus if presented were isolated for the material test. The incremental Young's modulus of adventitia of NAA was direction-dependent at low stretch levels, but not the media. Both adventitia and media had a similar extreme extensibility in the circumferential direction, but the adventitia was much stronger. For aneurysmal tissues, no significant differences were found when the incremental moduli of adventitia, media or thrombus in both directions were compared. Adventitia and media from AAA had similar extreme extensibility and ultimate strength in both directions and thrombus was the weakest material. Adventitia and media from AAA were less extensible compared with those of NAA, but the ultimate strength remained similar. The material properties, including extreme extensibility and ultimate strength, of both healthy aortic and aneurysmal tissues were layer-dependent, but not direction-dependent.This research is supported by BHF PG/11/74/ 29100, HRUK RG2638/14/16, the NIHR Cambridge Biomedical Research Centre, and National Natural Science Foundation of China (81170291).This is the final version. It was first published by Springer at http://dx.doi.org/10.1007/s10439-015-1323-

    A uni-extension study on the ultimate material strength and extreme extensibility of atherosclerotic tissue in human carotid plaques.

    Get PDF
    Atherosclerotic plaque rupture occurs when mechanical loading exceeds its material strength. Mechanical analysis has been shown to be complementary to the morphology and composition for assessing vulnerability. However, strength and stretch thresholds for mechanics-based assessment are currently lacking. This study aims to quantify the ultimate material strength and extreme extensibility of atherosclerotic components from human carotid plaques. Tissue strips of fibrous cap, media, lipid core and intraplaque hemorrhage/thrombus were obtained from 21 carotid endarterectomy samples of symptomatic patients. Uni-extension test with tissue strips was performed until they broke or slid. The Cauchy stress and stretch ratio at the peak loading of strips broken about 2mm away from the clamp were used to characterize their ultimate strength and extensibility. Results obtained indicated that ultimate strength of fibrous cap and media were 158.3 [72.1, 259.3] kPa (Median [Inter quartile range]) and 247.6 [169.0, 419.9] kPa, respectively; those of lipid and intraplaque hemorrhage/thrombus were 68.8 [48.5, 86.6] kPa and 83.0 [52.1, 124.9] kPa, respectively. The extensibility of each tissue type were: fibrous cap - 1.18 [1.10, 1.27]; media - 1.21 [1.17, 1.32]; lipid - 1.25 [1.11, 1.30] and intraplaque hemorrhage/thrombus - 1.20 [1.17, 1.44]. Overall, the strength of fibrous cap and media were comparable and so were lipid and intraplaque hemorrhage/thrombus. Both fibrous cap and media were significantly stronger than either lipid or intraplaque hemorrhage/thrombus. All atherosclerotic components had similar extensibility. Moreover, fibrous cap strength in the proximal region (closer to the heart) was lower than that of the distal. These results are helpful in understanding the material behavior of atherosclerotic plaques.This research is supported by BHF PG/11/74/29100, HRUK RG2638/14/16, the NIHR Cambridge Biomedical Research Centre and National Natural Science Foundation of China (81170291).This is the final version of the article. It first appeared from Elsevier via http://dx.doi.org/10.1016/j.jbiomech.2015.09.03

    Higgs friends and counterfeits at hadron colliders

    Get PDF
    We consider the possibility of "Higgs counterfeits" - scalars that can be produced with cross sections comparable to the SM Higgs, and which decay with identical relative observable branching ratios, but which are nonetheless not responsible for electroweak symmetry breaking. We also consider a related scenario involving "Higgs friends," fields similarly produced through gg fusion processes, which would be discovered through diboson channels WW, ZZ, gamma gamma, or even gamma Z, potentially with larger cross sections times branching ratios than for the Higgs. The discovery of either a Higgs friend or a Higgs counterfeit, rather than directly pointing towards the origin of the weak scale, would indicate the presence of new colored fields necessary for the sizable production cross section (and possibly new colorless but electroweakly charged states as well, in the case of the diboson decays of a Higgs friend). These particles could easily be confused for an ordinary Higgs, perhaps with an additional generation to explain the different cross section, and we emphasize the importance of vector boson fusion as a channel to distinguish a Higgs counterfeit from a true Higgs. Such fields would naturally be expected in scenarios with "effective Z's," where heavy states charged under the SM produce effective charges for SM fields under a new gauge force. We discuss the prospects for discovery of Higgs counterfeits, Higgs friends, and associated charged fields at the LHC.Comment: 27 pages, 5 figures. References added and typos fixe

    Phosgene in the Upper Troposphere and Lower Stratosphere: A Marker for Product Gas Injection Due to Chlorine‐Containing Very Short Lived Substances

    Get PDF
    Phosgene in the atmosphere is produced via the degradation of carbon tetrachloride, methyl chloroform, and a number of chlorine‐containing very short lived substances (VSLS). These VSLS are not regulated by the Montreal Protocol even though they contribute to stratospheric ozone depletion. While observations of VSLS can quantify direct stratospheric source gas injection, observations of phosgene in the upper troposphere/lower stratosphere can be used as a marker of product gas injection of chlorine‐containing VSLS. In this work we report upper troposphere/lower stratosphere measurements of phosgene made by the ACE‐FTS (Atmospheric Chemistry Experiment Fourier Transform Spectrometer) instrument and compare with results from the TOMCAT/SLIMCAT three‐dimensional chemical transport model to constrain phosgene trends over the 2004–2016 period. The 13‐year ACE‐FTS time series provides the first observational evidence for an increase in chlorine product gas injection. In 2016, VSLS accounted for 27% of modeled stratospheric phosgene, up from 20% in the mid‐2000s

    Two loop electroweak corrections to BˉXsγ\bar B\rightarrow X_s\gamma and Bs0μ+μB_s^0\rightarrow \mu^+\mu^- in the B-LSSM

    Full text link
    The rare decays BˉXsγ\bar B\rightarrow X_s\gamma and Bs0μ+μB_s^0\rightarrow \mu^+\mu^- are important to research new physics beyond standard model. In this work, we investigate two loop electroweak corrections to BˉXsγ\bar B\rightarrow X_s\gamma and Bs0μ+μB_s^0\rightarrow \mu^+\mu^- in the minimal supersymmetric extension of the SM with local BLB-L gauge symmetry (B-LSSM), under a minimal flavor violating assumption for the soft breaking terms. In this framework, new particles and new definition of squarks can affect the theoretical predictions of these two processes, with respect to the MSSM. Considering the constraints from updated experimental data, the numerical results show that the B-LSSM can fit the experimental data for the branching ratios of BˉXsγ\bar B\rightarrow X_s\gamma and Bs0μ+μB_s^0\rightarrow \mu^+\mu^-. The results of the rare decays also further constrain the parameter space of the B-LSSM.Comment: 33 pages, 9 figures, Published in EPJ

    WIMP-nucleus scattering in chiral effective theory

    Full text link
    We discuss long-distance QCD corrections to the WIMP-nucleon(s) interactions in the framework of chiral effective theory. For scalar-mediated WIMP-quark interactions, we calculate all the next-to-leading-order corrections to the WIMP-nucleus elastic cross-section, including two-nucleon amplitudes and recoil-energy dependent shifts to the single-nucleon scalar form factors. As a consequence, the scalar-mediated WIMP-nucleus cross-section cannot be parameterized in terms of just two quantities, namely the neutron and proton scalar form factors at zero momentum transfer, but additional parameters appear, depending on the short-distance WIMP-quark interaction. Moreover, multiplicative factorization of the cross-section into particle, nuclear and astro-particle parts is violated. In practice, while the new effects are of the natural size expected by chiral power counting, they become very important in those regions of parameter space where the leading order WIMP-nucleus amplitude is suppressed, including the so-called "isospin-violating dark matter" regime. In these regions of parameter space we find order-of-magnitude corrections to the total scattering rates and qualitative changes to the shape of recoil spectra.Comment: 23 pages, 6 figures, 1 tabl

    Effective Dark Matter Model: Relic density, CDMS II, Fermi LAT and LHC

    Full text link
    The Cryogenic Dark Matter Search recently announced the observation of two signal events with a 77% confidence level. Although statistically inconclusive, it is nevertheless suggestive. In this work we present a model-independent analysis on the implication of a positive signal in dark matter scattering off nuclei. Assuming the interaction between (scalar, fermion or vector) dark matter and the standard model induced by unknown new physics at the scale Λ\Lambda, we examine various dimension-6 tree-level induced operators and constrain them using the current experimental data, e.g. the WMAP data of the relic abundance, CDMS II direct detection of the spin-independent scattering, and indirect detection data (Fermi LAT cosmic gamma-ray), etc. Finally, the LHC reach is also explored

    Zebrafish Model for Functional Screening of Flow-Responsive Genes

    Get PDF
    OBJECTIVE: Atherosclerosis is initiated at branches and bends of arteries exposed to disturbed blood flow that generates low shear stress. This mechanical environment promotes lesions by inducing endothelial cell (EC) apoptosis and dysfunction via mechanisms that are incompletely understood. Although transcriptome-based studies have identified multiple shear-responsive genes, most of them have an unknown function. To address this, we investigated whether zebrafish embryos can be used for functional screening of mechanosensitive genes that regulate EC apoptosis in mammalian arteries. APPROACH AND RESULTS: First, we demonstrated that flow regulates EC apoptosis in developing zebrafish vasculature. Specifically, suppression of blood flow in zebrafish embryos (by targeting cardiac troponin) enhanced that rate of EC apoptosis (≈10%) compared with controls exposed to flow (≈1%). A panel of candidate regulators of apoptosis were identified by transcriptome profiling of ECs from high and low shear stress regions of the porcine aorta. Genes that displayed the greatest differential expression and possessed 1 to 2 zebrafish orthologues were screened for the regulation of apoptosis in zebrafish vasculature exposed to flow or no-flow conditions using a knockdown approach. A phenotypic change was observed in 4 genes; p53-related protein (PERP) and programmed cell death 2-like protein functioned as positive regulators of apoptosis, whereas angiopoietin-like 4 and cadherin 13 were negative regulators. The regulation of perp, cdh13, angptl4, and pdcd2l by shear stress and the effects of perp and cdh13 on EC apoptosis were confirmed by studies of cultured EC exposed to flow. CONCLUSIONS: We conclude that a zebrafish model of flow manipulation coupled to gene knockdown can be used for functional screening of mechanosensitive genes in vascular ECs, thus providing potential therapeutic targets to prevent or treat endothelial injury at atheroprone sites
    corecore