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Abstract Phosgene in the atmosphere is produced via the degradation of carbon tetrachloride, methyl
chloroform, and a number of chlorine-containing very short lived substances (VSLS). These VSLS are not
regulated by the Montreal Protocol even though they contribute to stratospheric ozone depletion. While
observations of VSLS can quantify direct stratospheric source gas injection, observations of phosgene in the
upper troposphere/lower stratosphere can be used as amarker of product gas injection of chlorine-containing
VSLS. In this work we report upper troposphere/lower stratosphere measurements of phosgene made by
the ACE-FTS (Atmospheric Chemistry Experiment Fourier Transform Spectrometer) instrument and
compare with results from the TOMCAT/SLIMCAT three-dimensional chemical transport model to constrain
phosgene trends over the 2004–2016 period. The 13-year ACE-FTS time series provides the first
observational evidence for an increase in chlorine product gas injection. In 2016, VSLS accounted for 27%
of modeled stratospheric phosgene, up from 20% in the mid-2000s.

Plain Language Summary Atmospheric phosgene, a chlorine-containingmolecule, is produced via
the degradation of the reasonably long lived species carbon tetrachloride and methyl chloroform, and a
number of very short lived substances (VSLS), including dichloromethane, chloroform, and
tetrachloroethene. Whereas the former are regulated by the Montreal Protocol because they contribute to
stratospheric ozone depletion, these latter species are not. It is therefore important that we continue to
monitor VSLS and the degradation products to determine howmuch additional chlorine, which catalyzes the
destruction of ozone, is reaching the stratosphere. VSLS can either reach the stratosphere directly, via
so-called source gas injection, or degrade in the troposphere into products such as phosgene, which are then
delivered into the stratosphere via so-called product gas injection (PGI). Monitoring phosgene in the
upper troposphere/lower stratosphere is therefore a marker for PGI due to chlorine-containing VSLS. In this
work we report measurements of phosgene in the upper troposphere/lower stratosphere made by the
ACE-FTS (Atmospheric Chemistry Experiment Fourier Transform Spectrometer) instrument. The 13-year
ACE-FTS time series provides the first observational evidence for an increase in chlorine PGI, which has been
predicted by atmospheric models.

1. Introduction

The majority of chlorine (Cl) in the atmosphere has arisen from anthropogenic emissions of organic species
such as chlorofluorocarbons (CFCs) and hydrochlorofluorocarbons (HCFCs). Due to their long lifetimes, many
of these species reach the stratosphere where they break down, liberating chlorine which catalyzes the
destruction of ozone (e.g., Carpenter et al., 2014). The principal inorganic degradation products of
Cl-containing organic species are carbonyl chloride (phosgene, COCl2), carbonyl chloride fluoride (COClF),
hydrogen chloride (HCl), and, since many of the source gases also contain fluorine, carbonyl fluoride
(COF2) and hydrogen fluoride (HF). Of these, phosgene is probably the most notorious, having been used
as a chemical weapon during World War I. In the lower stratosphere, where the phosgene mixing ratios
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Key Points:
• A 13-year global time series of

phosgene in the upper
troposphere/lower stratosphere is
presented from ACE-FTS data

• The observations provide evidence
for an increase in phosgene in the
upper troposphere and an overall
decrease in the stratosphere

• The increase in the upper
troposphere is consistent with the
increase in chlorine product gas
injection predicted by a 3-D model
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peak, the principal sources are the photolysis of carbon tetrachloride (CCl4) and, to a lesser extent, the reac-
tion of the hydroxyl radical (OH) with methyl chloroform (CH3CCl3).

Smaller contributions to the phosgene budget are known to arise from the atmospheric degradation of very
short lived substances (VSLS), species with tropospheric lifetimes under 6 months, such as dichloromethane
(CH2Cl2), chloroform (CHCl3), and tetrachloroethene (C2Cl4). These VSLS can degrade in the troposphere to
produce phosgene, some of which is directly transported into the stratosphere via so-called product gas
injection (PGI). They can also directly reach the stratosphere (e.g., Laube et al., 2008), via so-called source
gas injection (SGI), where small amounts will convert to phosgene. Either way, this transport of chlorine into
the stratosphere could potentially pose an additional challenge to the recovery of stratospheric ozone
(Hossaini et al., 2017). VSLS, with significant anthropogenic sources, are not regulated by the Montreal
Protocol and are, in the case of CH2Cl2, increasing in the atmosphere (e.g., Hossaini et al., 2015; Leedham
Elvidge et al., 2015).

Whereas the concentrations of the VSLS source gases near the tropopause can be measured
straightforwardly and to high precision, for example, by the National Aeronautics and Space
Administration (NASA) Airborne Tropical Tropopause Experiment (ATTREX; e.g., Navarro et al., 2015), the
product gas phosgene is only measured (to a lower precision) by spectroscopic remote-sensing instruments,
for example, located on satellite platforms. This makes the PGI of phosgene somewhat harder to quantify
than SGI and has led to its relative neglect in studies of VSLS-derived chlorine entering the stratosphere.
Additionally, phosgene is important as a marker for the stratospheric removal of carbon tetrachloride, CCl4,
which has attracted particular interest recently on account of the inconsistency between observations of
its abundance and estimated sources and sinks (e.g., Liang et al., 2014). Therefore, the role of phosgene as
a marker for PGI requires a holistic approach, which combines observations of phosgene in the upper
troposphere/lower stratosphere (UTLS) with a detailed understanding of its stratospheric sources and sinks.

Over the past two decades there have been a number of investigations of phosgene in the UTLS by infrared
remote-sensing instruments. The first of these by Toon et al. (2001) yielded 12 vertical profiles from nine MkIV
spectrometer balloon flights: seven profiles at northern midlatitudes (33–36°N) between 1992 and 1996 and
five profiles at northern high latitudes (64–68°N) between 1997 and 2000. The first global distribution of
phosgene was derived from measurements by the Atmospheric Chemistry Experiment Fourier transform
spectrometer (ACE-FTS)—in total 5,614 vertical profiles between February 2004 and May 2006 were used
(Fu et al., 2007). More recently Valeri et al. (2016) used Michelson Interferometer for Passive Atmospheric
Sounding (MIPAS) measurements, in particular 28,000 vertical profiles from the 18th and 20th of each month
of 2008, to investigate the seasonality and latitudinal distribution of phosgene in the UTLS region.

This work presents an important and novel long-term record of COCl2 observations made by the ACE-FTS
instrument between 2004 and 2016. These data are compared with new modeling results from the strato-
spheric configuration of the TOMCAT/SLIMCAT three-dimensional chemical transport model (CTM).
Observations and model are used to constrain COCl2 trends over the 2004–2016 period. To date, there have
been no detailed studies comparing global phosgene measurements with atmospheric models. In fact, the
only modeling study to look at both tropospheric and stratospheric phosgene is that of Kindler et al.
(1995), but this used a simple two-dimensional model to simulate the tropospheric cycle, and a simple
one-dimensional model for its production in the stratosphere. Hossaini et al. (2015) presented a detailed
VSLS tropospheric Cl scheme incorporated into TOMCAT/SLIMCAT; however, this did not include any strato-
spheric Cl chemistry and therefore did not extend into the region of the atmosphere where phosgene
volume mixing ratios (VMRs) peak. For the present work, detailed stratospheric phosgene chemistry is
included in the TOMCAT/SLIMCAT scheme for the first time.

2. Satellite Observations of Phosgene

The ACE-FTS instrument (Bernath, 2017), which has been recording atmospheric limb transmittance spec-
tra during sunrise and sunset (solar occultation) since 2004, is currently the only satellite instrument cap-
able of measuring phosgene vertical profiles on account of its high signal-to-noise ratio (by using the Sun
as a light source) and long atmospheric limb paths (~300-km effective length). With a spectral resolution
of 0.02 cm�1 over the range 750 to 4,400 cm�1, ACE has an excellent vertical resolution of about ~3 km
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(Clerbaux et al., 2005) but no horizontal discrimination. It measures dur-
ing a maximum of 30 occultation events per day, each sampling the
atmosphere from 150 km down to the cloud tops (or 5 km in the
absence of clouds). Over the course of a year, ACE records over a large
portion of the globe, although due to its orbit the majority of
measurements are at high latitudes.

Version 3.5/3.6 of the ACE-FTS retrieval software (Boone et al., 2013) was
used for the phosgene VMR retrievals. In short, vertical VMR profiles of
trace gases (along with temperature and pressure) are derived from the
ACE transmittance spectra via a nonlinear least squares global fit to the
selected spectral region(s) for all measurements within the altitude range
of interest. Retrievals were performed using a microwindow from 830 to
858 cm�1. Interferers retrieved simultaneously with COCl2 were CCl3F
(CFC-11), CO2, HNO3, O3, OCS, C2H6, H2O, and H2

18O. The lower altitude
limit for the retrievals varied with latitude, 10 km near the equator and
8 km near the poles, with an upper limit of 23.5–28.5 km. Spectroscopic
line parameters and absorption cross sections for all molecules except
COCl2 were taken from the HITRAN 2004 database (Rothman et al.,
2005); spectroscopic line parameters for phosgene were taken from
Brown et al. (1996) and Toon et al. (2001).

3. Model Simulations of Phosgene

TOMCAT/SLIMCAT (hereafter simply TOMCAT) is a state-of-the-art off-line global three-dimensional CTM
(Chipperfield, 2006). Its outputs have been widely evaluated against observations of tropospheric and strato-
spheric composition; for example, it reproduces well the tropospheric abundance of chlorine-containing
VSLS (Hossaini et al., 2015) and the stratospheric abundance of hydrogen fluoride (Harrison et al., 2016).
The model is forced with meteorological fields, including winds and temperatures, from European Centre
for Medium-Range Weather Forecasts (ECMWF) ERA-Interim reanalyses.

Due to the large demands placed on processing resources, TOMCAT exists in two configurations, one focus-
ing on the troposphere and the other on the stratosphere. This work makes use of the stratospheric model
configuration, which contains a comprehensive stratospheric chemistry scheme, including the major species
in the Ox, NOy, HOx, Fy, Cly, and Bry chemical families. Time-dependent surface boundary conditions for the
source gases, for example, CFCs, are specified using data sets prepared for the World Meteorological
Organization/United Nations Environment Programme (2011) ozone assessment.

Two model simulations were run over 2000–2016 at a horizontal resolution of 2.8° × 2.8° with 32 levels from
the surface to ∼60 km; the levels are not evenly spaced in altitude, but the resolution in the stratosphere is
~1.5–2.0 km. For the first of these, ACT1, phosgene is assumed to be produced only from carbon tetrachloride
and methyl chloroform in the two reactions,

CCl4 þ hv→COCl2 þ products

CH3CCl3 þ OH→COCl2 þ products;
(R1)

with assumed yields of 100%. Loss of phosgene occurs via photodissociation and reaction with O(1D),

COCl2 þ hv→COþ 2Cl

COCl2 þ O 1Dð Þ→CO2 þ 2Cl:
(R2)

For the second simulation, ACT2, the production of stratospheric phosgene from the SGI of VSLS is
directly considered, as is the stratospheric PGI of phosgene from the troposphere. Upper tropospheric
mixing ratios for the injected phosgene parent molecules, CH2Cl2, CHCl3, C2Cl4, and COCl2, are given in
Table 1. Trends are imposed by supplying time-dependent mixing ratios from 2000 to 2016; these are
the upper tropospheric outputs from the full tropospheric configuration of TOMCAT, an update of

Table 1
Upper Tropospheric Mixing Ratios (ppt) of VSLS Species Included in
Simulation ACT2

CH2Cl2 CHCl3 C2Cl4 COCl2

2000 14.01 5.08 0.83 2.58
2001 14.61 4.92 0.89 2.40
2002 14.24 4.81 0.81 2.32
2003 14.94 4.84 0.76 2.42
2004 14.98 4.69 0.70 2.33
2005 15.60 4.69 0.67 2.35
2006 16.42 4.67 0.66 2.35
2007 18.38 4.82 0.62 2.44
2008 19.27 4.79 0.62 2.54
2009 20.03 4.65 0.62 2.46
2010 23.12 4.80 0.65 2.50
2011 23.13 4.88 0.53 2.54
2012 24.49 5.18 0.51 2.55
2013 29.27 5.37 0.55 2.83
2014 32.15 5.90 0.57 3.08
2015 31.84 5.66 0.56 2.96
2016 31.98 5.79 0.52 3.08
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Hossaini et al. (2015), as used by Chipperfield et al. (2018). Yields for the
different VSLS reaction pathways producing stratospheric phosgene are
listed in Table 2. Phosgene production from CH2Cl2 was parameterized
using an expression adapted from the full degradation mechanism
(Hossaini et al., 2018):

ξ ¼ 0:7k3 HO2½ � þ 0:4k4 CH3O2½ �
k1 NO½ � þ k2 NO3½ � þ k3 HO2½ � þ k4 CH3O2½ � ; (1)

where k1, k2, k3, and k4 are rate constants for the reactions of CHCl2O2 with
NO, NO3, HO2, and CH3O2, respectively; ξ is typically less than 0.05 at the
tropopause for all latitudes.

4. Results and Discussion

The overall stratospheric distribution of COCl2 is determined by a complex combination of its production,
lifetime, and transport. The most notable feature from the zonal mean plots in Figure 1, which show all
12 months of ACE-FTS data and TOMCAT simulation ACT2 in 2005, is the peak in VMRs observed at ~22–
27 km over the tropics. Young, carbon-tetrachloride-rich air in the lower tropical stratosphere combined
with the high solar insolation due to the small solar zenith angle results in increased phosgene yields via
the carbon-tetrachloride-photodissociation pathway, the main production route. COCl2 has a strato-
spheric lifetime of 1.65 years (calculated from the ACT2 outputs: the total modeled stratospheric burden
divided by the total stratospheric loss rate), so it is long-lived enough to be transported poleward by the
Brewer-Dobson circulation. Higher in the stratosphere, above the COCl2 VMR maxima, there is net loss of
phosgene at all latitudes, primarily via photolysis (98.4%) and secondarily through reaction with O(1D;

Table 2
VSLS Sources of Stratospheric Phosgene

Source COCl2 yield References and notes

CHCl3 + OH 1 Kindler et al. (1995)
CHCl3 + Cl 1 Assumed as for CHCl3 + OH
CH2Cl2 + OH ξ Hossaini et al. (2018)
CH2Cl2 + Cl ξ Assumed as for CH2Cl2 + OH
C2Cl4 + OH 0.47 Tuazon et al. (1988),

as discussed by Kindler et al. (1995)
C2Cl4 + Cl 0.47 Assumed as for C2Cl4 + OH
C2Cl4 + hv 1 Model assumes the same J rate

as for CHCl3 + hv

Figure 1. A comparison between Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) and TOMCAT simulation ACT2 (with very short lived
substances) COCl2 zonal means for 2005. The plotted volume mixing ratios (VMRs) are the averages for each month of all filtered data at each altitude within 5°
latitude bins. TOMCAT does have a slightly higher vertical resolution in the stratosphere (~1.5–2.0 km) compared with the ACE-FTS (~3 km); since the differences are
not too large, these are not explicitly accounted for in the comparisons.
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1.6%). The impact of the inclusion of VSLS in simulation ACT2 can be visualized in Figure 2, which fea-
tures COCl2 zonal mean plots of the TOMCAT simulations ACT1 and ACT2 for 4 months of 2016. VSLS
make a small contribution to the phosgene vertical profiles, increasing the VMRs at most by ~3–4 ppt
from the troposphere up to the stratospheric VMR peak in each latitude band, above which this contri-
bution drops off.

The zonal mean plots of Figure 1 show good agreement between ACE-FTS and TOMCAT calculations in
terms of the location of the peak VMRs; however, there are still some differences. First, the ACE-FTS mea-
surements for a given month are relatively noisy, a consequence of there being a maximum of only 30
ACE-FTS measured profiles per day. Due to the nature of the orbit, the widest range of latitude coverage
of the atmosphere only occurs over four calendar months—February, April, August, and October.
The majority of measurements throughout the year are taken at high latitudes. Second, in the upper
troposphere the modeled phosgene is 10–20 ppt lower than ACE-FTS. This bias was also observed in a
comparison of an averaged tropical ACE-FTS profile with outputs of TOMCAT in its tropospheric
Cl-chemistry configuration. This remains unexplained but could arise from an underestimate of the
in-mixing of phosgene-containing air from the lower stratosphere (Hossaini et al., 2015), a missing phos-
gene source in the model, or an underestimate of the yield from an existing source. Very recent work by
Hossaini et al. (2018) for phosgene in the tropics notes that a substantial reduction in the bias is achieved
if the parameter ξ is set to unity, although this comes at the expense of the agreement at higher
altitudes. This does not necessarily indicate that ξ should be unity but that the mechanism and yield
of COCl2 production requires more investigation.

It is also possible that ACE-FTS phosgene retrievals are simply biased high in the troposphere. However, this
would likely require a missing spectroscopic contribution from a species absorbing in the same spectral
region as phosgene, with a concentration that drops off at the tropopause; there is no evidence for this. It
was noted in the original ACE-FTS study (Fu et al., 2007) that the phosgene retrieval uncertainty is dominated
by spectroscopic errors, assumed to be ∼30%, resulting from uncertainties in line intensities and the lack of
hot bands in the linelist. A recent MIPAS phosgene data set (Valeri et al., 2016) used a new and improved
spectroscopic linelist for phosgene. The upper tropospheric values are comparable to those of the
ACE-FTS, although it needs to be recognized that this was an optimal-estimation scheme making use of
ACE-FTS profiles as the a priori. This new phosgene linelist (Gordon et al., 2017) and a new set of
trichlorofluoromethane absorption cross sections (Harrison, 2018) will be used for the next processing
version of ACE-FTS data.

Figure 2. A comparison between the TOMCAT simulations ACT1 (without very short lived substances) and ACT2 (with very short lived substances) COCl2 zonal
means for January, April, July, and October 2016.
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ACE-FTS and TOMCAT trends have been calculated for the 13-year time period January 2004 to December
2016, as a function of altitude (on a 1-km grid) and latitude (in 10° bins) from linear regression fits to monthly
anomalies in COCl2 zonal mean VMRs; the approach used is similar to that presented in Harrison et al. (2016).
Uncertainties in the ACE-FTS anomalies for each regression are the standard deviations, with those for
TOMCAT anomalies arbitrarily set to 0; final trend uncertainties are the 1-σ uncertainty estimates for each lin-
ear regression. Figure 3 contains trend plots for ACE-FTS and both TOMCAT simulations ACT1 and ACT2. The
TOMCAT plots share a number of similarities with the ACE plot, namely, the region from the tropics to the
North Pole at the highest retrieved altitudes (20–25 km) where the trends are predominantly large and nega-
tive, and the region in the southern midlatitudes at the highest altitudes where the trends are positive. These
trends, associated with lower stratospheric phosgene, are influenced by changing stratospheric dynamics

Figure 3. Trends in the growth of COCl2 (ppt/year; January 2004 to December 2016) as a function of latitude and altitude
for (a) Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS), (b) TOMCAT simulation ACT1
(without very short lived substances), and (c) TOMCAT simulation ACT2 (with very short lived substances).
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over the period of the observations and reveal differences between southern and northern hemispheres. The
off-line formulation of TOMCAT, which uses specified ECMWF meteorology, does not allow for any rigorous
explanation of the changing stratospheric dynamics that are responsible for the observed trends; however,
these are in line with previous observations of stratospheric species (e.g., Harrison et al., 2016; Mahieu
et al., 2014).

With the steady decline in the atmospheric concentration of carbon tetrachloride, the main phosgene source
gas, the expectation is that phosgene is declining in the atmosphere as a whole. Certainly, calculating a VMR-
weighted trend over the entire altitude range of the ACE-FTS observations reveals that this is the case:
�0.057 ± 0.030 ppt/year; all reported uncertainties are the standard errors of the weighted trends. One of
the principal points of interest in the plots in Figure 3 concerns the upper tropospheric phosgene trends.
Whereas those for the ACT2 run, which includes VSLS, are slightly positive, in line with the positive trend in
the upper tropospheric phosgene values provided in Table 2, those for the ACT1 run, without VSLS, are nega-
tive. The positive observed ACE-FTS upper tropospheric trends therefore provide evidence for an increase in
chlorine PGI from VSLS, as predicted by models but not previously observed. The overall VMR-weighted
upper tropospheric trend for ACE-FTS, calculated for the upper tropospheric region where the ACT2 trends
are positive, is 0.119 ± 0.030 ppt/year; this is slightly higher than for the ACT2 trend of 0.042 ± 0.001 ppt/year.
The overall VMR-weighted trends for the two model runs are�0.273 ± 0.005 ppt/year for ACT1 (no VSLS) and
�0.209 ± 0.005 ppt/year for ACT2 (with VSLS). The inclusion of VSLS in ACT2 introduces a gradually increasing
phosgene source, which slightly offsets the declining phosgene produced from carbon tetrachloride. Note,
however, that the values from both model simulations are still more negative than the ACE-FTS value of
�0.057 ppt/year, which contains a larger weighting from the upper troposphere, where VMRs are higher than
the model and the trend is positive.

From the stratospheric phosgene burdens calculated for runs ACT1 and ACT2, and using a climatological tro-
popause pressure (Lawrence et al., 2001) defined as

p ¼ 300� 215 cos2 ϕð Þ; (2)

where p is the pressure in hPa and ϕ is the latitude, we have calculated the fractional contribution that phos-
gene derived from VSLS makes to the overall stratospheric phosgene budget. This contribution is approxi-
mately constant at ~20% from 2004 until 2008 when it gradually increases to 27% by 2016. This is
relatively large and reflects the fact that VSLS contribute to phosgene mixing ratios in the lower stratosphere
where air density is larger than at higher altitudes. An increase in this contribution is to be expected as the
amount of carbon tetrachloride in the stratosphere gradually drops, and the VSLS, in particular dichloro-
methane and chloroform, slowly increase in the troposphere.

5. Conclusions

In this work, 13 years of ACE-FTS phosgene data, from 2004 to 2016, are analyzed and compared with the out-
put of the stratospheric configuration of the TOMCAT/SLIMCAT CTM; this work represents the most detailed
stratospheric modeling study of phosgene to date. In addition to the traditionally recognized and decreasing
sources of long-lived carbon tetrachloride and methyl chloroform, contributions from VSLS are also included
via direct source-gas and product-gas injection into the stratosphere. A decrease in stratospheric phosgene,
due to the long-lived sources, is confirmed by both ACE-FTS observations and model. The comparison in the
upper troposphere, however, reveals differences; namely, the model calculates phosgene VMRs ~10–20 ppt
lower. Despite this bias, the upper tropospheric positive trend in the ACE-FTS observations, the reverse of that
in the stratosphere, is consistent with an increase in phosgene prescribed by the TOMCAT outputs when VSLS
are included. These observations thus provide the first observational evidence for an increase in chlorine PGI.

Phosgene in the upper troposphere, far from the region where carbon tetrachloride photolyzes, is therefore a
marker for Cl-containing VSLS entering the stratosphere. However, before more quantitative conclusions can
be drawn, the nature of the upper-tropospheric bias between observation and model needs to be under-
stood. Future modeling work should investigate the mechanism and yield of phosgene production from
dichloromethane. Future work on the observation side will include reprocessing the ACE-FTS data with the
new and more accurate COCl2 and CFC-11 spectroscopic data and compare these with MIPAS data
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processed using the same reference spectroscopy. With MIPAS measurements being uniform in space and
time, these comparisons can potentially provide information on biases caused by the sparse sampling of
the ACE-FTS instrument. With a set of observations using the most accurate reference spectroscopy and
the latest v4.0 ACE-FTS processing algorithm, weaknesses in the model can be more robustly diagnosed.
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