593 research outputs found

    High-sensitivity receiver for CO2 laser communications

    Get PDF
    Wideband heterodyne receiver provides detection and demodulation of incident frequency modulated laser signal; search and acquisition circuitry to align two stations; tracking circuitry to maintain spatial alignment; and laser frequency monitor to frequency lock the transmit and local oscillator lasers

    High concentrations of flavor chemicals are present in electronic cigarette refill fluids.

    Get PDF
    We characterized the flavor chemicals in a broad sample of commercially available electronic cigarette (EC) refill fluids that were purchased in four different countries. Flavor chemicals in 277 refill fluids were identified and quantified by gas chromatography-mass spectrometry, and two commonly used flavor chemicals were tested for cytotoxicity with the MTT assay using human lung fibroblasts and epithelial cells. About 85% of the refill fluids had total flavor concentrations >1 mg/ml, and 37% were >10 mg/ml (1% by weight). Of the 155 flavor chemicals identified in the 277 refill fluids, 50 were present at ≥1 mg/ml in at least one sample and 11 were ≥10 mg/ml in 54 of the refill fluids. Sixty-one% (170 out of 277) of the samples contained nicotine, and of these, 56% had a total flavor chemical/nicotine ratio >2. Four chemicals were present in 50% (menthol, triacetin, and cinnamaldehyde) to 80% (ethyl maltol) of the samples. Some products had concentrations of menthol ("Menthol Arctic") and ethyl maltol ("No. 64") that were 30 times (menthol) and 100 times (ethyl maltol) their cytotoxic concentration. One refill fluid contained cinnamaldehyde at ~34% (343 mg/ml), more than 100,000 times its cytotoxic level. High concentrations of some flavor chemicals in EC refill fluids are potentially harmful to users, and continued absence of any regulations regarding flavor chemicals in EC fluids will likely be detrimental to human health

    Complementary, Semi-automated Methods for Creating Multi-dimensional, PEG-based Biomaterials

    Get PDF
    Tunable biomaterials that mimic selected features of the extracellular matrix (ECM), such as its stiffness, protein composition, and dimensionality, are increasingly popular for studying how cells sense and respond to ECM cues. In the field, there exists a significant trade-off for how complex and how well these biomaterials represent the in vivo microenvironment, versus how easy they are to make and how adaptable they are to automated fabrication techniques. To address this need to integrate more complex biomaterials design with high-throughput screening approaches, we present several methods to fabricate synthetic biomaterials in 96-well plates and demonstrate that they can be adapted to semiautomated liquid handling robotics. These platforms include 1) glass bottom plates with covalently attached ECM proteins, and 2) hydrogels with tunable stiffness and protein composition with either cells seeded on the surface, or 3) laden within the three-dimensional hydrogel matrix. This study includes proof-of-concept results demonstrating control over breast cancer cell line phenotypes via these ECM cues in a semi-automated fashion. We foresee the use of these methods as a mechanism to bridge the gap between high-throughput cell-matrix screening and engineered ECM-mimicking biomaterials

    Geriatric Interdisciplinary Team Training

    Get PDF
    Educational Objectives 1. To demonstrate the importance of training health care professionals in inter-disciplinary teamwork and geriatric health issues. 2. To increase one’s knowledge of the roles and responsibilities of the various disciplines involved in interdisciplinary teamwork

    Monitoring of Steel Microstructures using Electromagnetic Sensors

    Get PDF
    The characterization of steel microstructures is an important tool for metallurgists as mechanical properties are controlled by microstructural parameters such as grain size, phase balance and precipitates. This paper descr-ibes multi frequency electromagnetic(EM)sensors that have been designed to detect changes in the relative permea-bility and resistivity of steel on-line during steel processing, which can be directly related to changes in microstructure. Examples presented in this paper include both laboratory hot tests and industrial field trials for monitoring ofphase transformation in steels, detection of decarburization on a steel rod surface, and imaging of molten steel in the submerged entry nozzle (SEN) during continuous casting

    Quantification of the effect of changes in steel microstructural parameters on EM sensor signals

    Get PDF
    In an accompanying paper being presented in NDESAI, the utility of Multifrequency electromagnetic sensors has been shown to be able to detect steel microstructure changes, for example the austenite to ferrite transformation and the presence of decarburisation in high carbon steel rods. In the present study, steels with various carbon contents have been used to study the effect of phase balance changes (ferrite, pearlite, un-tempered martensite and tempered martensite) on the EM readings. With an increase in pearlite content in ferrite/ pearlite microstructures, the relative permeability and hence inductance value dec-reases. Changing the microstructural state from pearlite to martensite, in a high carbon steel, decreases the rel-ative permeability and hence inductance value, whilst tempering increases these values. In addition, steel wires, with a fully pearlitic microstructure have been used to determine whether the EM sensor can be used to quantify interlamellar spacing changes. The low frequency inductance value was found to increase approximately linearly with an increase in the interlamellar spacing for the range of values investigated

    The Microhardness of Enamel and Dentin

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/68055/2/10.1177_00220345580370041301.pd

    Comparative Study of Multicellular Tumor Spheroid Formation Methods and Implications for Drug Screening

    Get PDF
    Improved in vitro models are needed to better understand cancer progression and bridge the gap between in vitro proof-of-concept studies, in vivo validation, and clinical application. Multicellular tumor spheroids (MCTS) are a popular method for three-dimensional (3D) cell culture, because they capture some aspects of the dimensionality, cell–cell contact, and cell–matrix interactions seen in vivo. Many approaches exist to create MCTS from cell lines, and they have been used to study tumor cell invasion, growth, and how cells respond to drugs in physiologically relevant 3D microenvironments. However, there are several discrepancies in the observations made of cell behaviors when comparing between MCTS formation methods. To resolve these inconsistencies, we created and compared the behavior of breast, prostate, and ovarian cancer cells across three MCTS formation methods: in polyNIPAAM gels, in microwells, or in suspension culture. These methods formed MCTS via proliferation from single cells or passive aggregation, and therefore showed differential reliance on genes important for cell–cell or cell–matrix interactions. We also found that the MCTS formation method dictated drug sensitivity, where MCTS formed over longer periods of time via clonal growth were more resistant to treatment. Toward clinical application, we compared an ovarian cancer cell line MCTS formed in polyNIPAAM with cells from patient-derived malignant ascites. The method that relied on clonal growth (PolyNIPAAM gel) was more time and cost intensive, but yielded MCTS that were uniformly spherical, and exhibited the most reproducible drug responses. Conversely, MCTS methods that relied on aggregation were faster, but yielded MCTS with grape-like, lobular structures. These three MCTS formation methods differed in culture time requirements and complexity, and had distinct drug response profiles, suggesting the choice of MCTS formation method should be carefully chosen based on the application required

    Tolerance induction in memory CD4 T cells requires two rounds of antigen-specific activation

    Get PDF
    Autoimmune diseases are driven by immune cells that recognize self-tissues. A major goal for treatment strategies for autoimmune diseases is to turn off or tolerize self-reactive immune cells such as CD4 T cells that coordinate tissue damage in many autoimmune diseases. Autoimmune diseases are often diagnosed many years following their onset. The self-reactive CD4 T cells that must be tolerized, therefore, are previously activated or memory CD4 T cells. Little is known about whether tolerance can be induced in memory CD4 T cells. This paper demonstrates that memory CD4 T cells survive initial exposure to tolerance-inducing signals but that a second activation signal leads to cell death. This study has important implications for immunotherapeutic strategies for autoimmune diseases
    • …
    corecore