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Abstract: Bioengineers have built increasingly sophisticated models of the tumor 
microenvironment in which to study cell-cell interactions, mechanisms of cancer growth and 
metastasis, and to test new potential therapies. These models allow researchers to culture cells in 
conditions that include features of the in vivo tumor microenvironment (TME) implicated in 
regulating cancer progression, such as ECM stiffness, integrin binding to the ECM, immune and 
stromal cells, growth factor and cytokine depots, and a 3D geometry more representative of the 
TME than tissue culture polystyrene (TCPS). These biomaterials could be particularly useful for 
drug screening applications to make better predictions of efficacy, offering better translation to 
preclinical in vivo models and clinical trials. However, it can be challenging to compare drug 
response reports across different platforms and conditions in the current literature. This is, in part, 
as a result of inconsistent reporting and use of drug response metrics, and vast differences in cell 
growth rates across a large variety of biomaterial design. This perspective paper attempts to clarify 
the definitions of drug response measurements used in the field, and presents examples in which 
these measurements can and cannot be applied. We suggest as best practice to include appropriate 
controls, always measure the growth rate of cells in the absence of drug, and follow our provided 
“decision tree” matrix when reporting drug response metrics.  
 
Keywords: breast cancer, ovarian cancer, drug resistance, bioengineering, extracellular matrix, tumor 
microenvironment 
 
1. Introduction 
Pharmacology metrics, such as IC50 (the inhibition concentration where the response is reduced by half), 
EC50 (the effective concentration of a drug that gives half-maximal response), and Emax (the drug’s maximum 
effect), have been used to evaluate the results of drug response assays and describe drug potency. 
Recently, Hafer et al. defined the GR50: the concentration of a drug that reduces cell growth rate by half [1]. 
The GR50 was an important contribution to the field, because it accounts for the variable differences in 
growth rates between different cell lines. However, these terms can be misrepresented or applied 
incorrectly in certain instances, which has led to inconsistent results between studies. As one high profile 
example, Haibe-Kains et al. [2] reported inconsistencies between two large pharmacogenomic studies: the 
Cancer Genome Project (CGP) [3] and the Cancer Cell line Encyclopedia (CCLE) [4]. They compared the 
IC50 and the area under the dose-response curve (AUC) for 15 drugs across 471 cell lines, and found very 
little correlation between the two studies (Spearman’s rank correlation of 0.28 and 0.35 for IC50 and AUC, 
respectively) [2]. Discrepancies between these studies and others could be attributed to differences 
between experimental protocols (e.g. type and length of assay, cell culture substrate, and medium used), 
method of dose-response analysis, or because different labs use and apply these pharmacological metrics 
to their results differently. 
 
This type of inconsistency has extended to bioengineering, were new biomaterials platforms have been 
developed to incorporate features of the TME (e.g. 3D geometries, co-culture system, tunable ECM 
stiffness). Bioengineers have postulated that these ECM cues from the TME could radically impact drug 
responses, which could be important for predicting the value of a drug before embarking on pre-clinical 
studies. During a search of the literature, we observed that bioengineers have quantified drug responses 
using many different drug response metrics; however, it is not clear in every study why certain reporting 
tools were used, and whether or not they were applied correctly. For instance, we found cases where an 



IC50 was reported, but the drug was not effective enough to inhibit growth of half the cell population. 
Particularly an issue for 3D biomaterials, cell growth rate differences between 2D and 3D raises the 
question of whether the same reporting tool should be used for both.  
 
In analyzing the literature, we wondered whether the implementation of a global, consistent analysis would 
reduce the disagreement of values reported. Would methods used to analyze drug responses in 2D culture 
also apply for 3D systems? In the case of co-culture systems, should a different approach be used to 
separate the responses from cancer cells and other healthy cells in the TME? With this in mind, this 
perspective compares select cases in the literature, our own data for cell responses to drugs in and on 
biomaterials, metrics reported, and inconsistencies between studies. We end with a recommendation for 
the incorporation of additional drug response metrics when working with biomaterial systems. 
 
2. Definitions of Drug Response Metrics 
Drug response assays evaluate the efficacy of a drug over a range of concentrations. For simplicity, we will 
define the number of cells at the start of the assay readout, or the ‘initial value’ of the cells as y0 (Figure 1a). 
Unfortunately, many papers to not measure y0, which prevents some metrics from being reported, 
discussed later. The cells are then incubated with drug for a defined period of time (typically 24-72 hours), 
and cell viability is measured (yfinal). Cells are also incubated with a small amount of the vehicle in which 
the drug was dissolved (often DMSO or water), serving as a control (yctrl). A drug is cytostatic if it slows or 
completely prevents growth of cells [5]. In other words, if the measured cell viability is between y0 and yctrl, 
that drug is said to be cytostatic at that concentration. Cytotoxic (in this context) means that the drug 
reduces the cell number from the initial cell count (yfinal<y0). Note that when y0 is not measured, the drug 
cytotoxicity cannot be reported. 
 
There are six typical metrics used to report the effect of a drug on a cell culture: IC50, EC50, GI50, GR50, Emax, 
and AUC (Figure 1a). Figure 1 gives definitions of these metrics, with three hypothetical drug response 
curves with varying degrees of “potency.” A “potent” drug is 100% cytotoxic, a “moderately potent” drug 
achieves 100% growth inhibition but no net cell death, and a “less potent” drug reduces cell growth by 50% 
(Figure 1, b-g). The IC50 and Emax do not consider the initial population (y0), nor the number of cell divisions 
during the length of the assay, which was a motivating factor for Hafer et al. to define the GR50 [1]. Only the 
GI50 and GR50 take y0 into consideration. GI50, is the dose that inhibits the growth of cells by 50%, and GR50 
represents the growth rate, not growth, of the cell culture. The initial cell population, y0, can vary between 
type of assay, cell type, or length of assay, and to account for that, GI50 and GR50 are represented as data 
normalized with respect to the initial values (Figure 1e-g).  
 
Although the ‘50’ in IC50, EC50, GI50, GR50 signifies a 50% inhibition, they can be used with values other 
than 50 to indicate different effects, e.g. IC90 [6, 7]. Negative values can be used for the cytotoxic regime 
(yfinal<y0), although these do not come from the formal definitions of GI or GR. In this case, GI-10 would be 
the concentration where the cells are reduced 10% from the initial value (yfinal = 0.9×y0), and GI-100 would 
be the concentration, which kills all the cells. In the Figure 1 example, 0-100 is defined over the range of 
20k£y£100k, while -100-0 is defined over the range of 0£y£20k. IC-n or EC-n values are not possible since 
these metrics do not consider initial values. 
 
The Emax and AUC represent the maximum and cumulative effects of the drug, respectively. Emax is the 
fraction of viable cells at the highest drug concentration tested in the experiment, and AUC is the area under 
the viability curve for a cell population over the tested drug concentration range. Both of these metrics 
depend on the concentration range used in a given experiment, which means that their reported values are 
cannot be translated to other experiments if another lab used a different drug concentration range.  
 
The IC50 is the most commonly reported drug response metric [8], and therefore important to highlight cases 
in which it is used with an incorrect definition. For instance, the IC50  should not be considered a measure 
of cell death  [5]. As one example, in a case when the control value is more than 200% of the initial value 
(yctrl > 2×y0, as can be seen in the examples given in Figure 1b-d), the IC50 will result in a “cytostatic” dose, 
but the cells are still growing, be it at a reduced rate. Second, in a case where a reduction in half the 
population is not reached, (such as in [9-11]) the IC50 cannot be appropriately calculated, and instead the 
EC50 is the more appropriate metric to report. In other instances in the literature, the EC50 and GI50 are 



confused for the IC50 [12]. However, this metric is a correction of the IC50, since it takes into account the 
initial cell count (y0) [13, 14].  
 
Further, we found examples where authors report a GI50, when it is actually an IC50 (they did not measure 
a y0) [15]. For example, the cell population could grow over the course of an experiment, while the measured 
population values could still be lower than the control. Therefore, the initial cell populations must be 
measured to know whether a drug is killing cells or only slowing their growth. In addition, the IC50 is 
sometimes discussed in the context of growth inhibition [16], although it is not capable of measuring this. 
We thus recommend the field reports the metric that is most appropriate for their observed responses and 
experimental conditions, given the explanations we state above. We also recommend that researchers 
measure the initial cell concentration values (y0), which will enable them to calculate GI50 and GR50, 
particularly important where multiple cell lines are being tested, as these metrics will account for differences 
in growth rates.  
 
The GR50 is very similar to GI50, but is defined by reduction of the growth rate, not cell growth. Growth rate 
inhibition is calculated from initial and control values, and the fitting for the GR50 relies on the assumption 
that the cells are in exponential growth before application of the drug. GR50 is thus reported to be more 
robust than GI50 against variations in experimental protocols and conditions [1].   
 
3. Applying drug response metrics to data obtained from biomaterial drug screening assays 
Two-dimensional (2D) [17-19] and 3D [20-22] biomaterial cell culture platforms have been developed to 
study cell behavior in vitro. Drug screening cells in biomaterials rather than on TCPS is increasingly popular 
due to the fact that more physiologically relevant features can be captured in biomaterials that may impact 
drug response. Since it is widely accepted that cells grow at different rates in 2D and 3D biomaterial 
platforms [23], it is difficult to compare drug responses across these different environments without a GI50 
or GR50. Experiments to obtain these metrics require only minor adjustments to traditional drug screening 
protocols performed by seeding cells in an additional plate to measure initial values (Figure 2a). In 
particular, the GR50 has worked very well for over 4,000 combinations of breast cancer cell lines and drugs 
on TCPS [24], but work in 3D systems has limited use of the GR50 [25].   
 
Our own labs use both 2D and 3D biomaterials in addition to TCPS for drug screening studies, and we have 
adapted our experimental procedures to collect data for calculating GR metrics in addition to the other 
metrics depicted in Figure 1 [26]. However, we have found that the GR50 cannot always be applied. As it 
has been previously reported [1, 24], it is necessary for the cells to achieve exponential growth over the 
course of the assay to use the GR50. On TCPS, this is not an issue, as demonstrated by our data in Figure 
2b with SKOV-3 ovarian cancer cells and paclitaxel. In this case, the GR values span a -1 to 1 range, which 
results in a good curve fit to calculate a GR50.  
 
Another important factor to consider in preclinical drug screening assays is the increasing use of patient-
derived primary cells. This has become a hurdle as many primary cells grow slowly and do not achieve 
exponential growth, making it impossible to calculate a GR50 value. As illustrated by our own data of patient-
derived cells ovarian cancer cells from ascites dosed with cisplatin on TCPS (Figure 2c), IC50 and EC50 
values can be calculated, but since there was low growth, the GR50 could not be calculated.  
 
Work by Longati [21] highlights how pluripotent stem cell (PSC) drug response differs on 2D vs. 3D culture. 
Although IC50 values were not reported in this work, we calculated the IC50 and EC50 from their published 
data, and observed higher resistance in their PSC cells in 3D compared to 2D (Supplemental Table 1). 
Work from Ivanov [22] performed drug response studies with neural stem cells (NSCs) and the UW228-3 
cell line in 3D. They found that the NSC drug response was biphasic, but not for the human 
medulloblastoma UW228-3 cell line (which showed more resistance in 3D). Here, two IC50 values were 
reported for the same curve in the case of primary cells, representing a situation where an IC50 (or 
GI/GR/EC50) is inappropriate. We would suggest an AUC or Emax instead, which are not dependent on curve 
fitting (Figure 1b-d). 
 
As demonstrated by our own experimental data (Figure 2d), culture of 3D patient-derived spheroids from 
ascites in a nondegradable 3D hydrogel exhibited a low growth rate over the course of the assay. Although 



a dose-response curve with mafosfamide was generated from the data (Figure 2d), this does not mean that 
a valid GR50 value can be obtained. GR value curves need to pass through GR = 0.5, or they cannot have 
a reliable GR50 value, even if certain curve fitting software gives a value for these circumstances, as we 
demonstrate in Figure 2d. Therefore, we recommend that only the online GR calculator [1] be used to 
calculate GR metrics from raw data to ensure that true GR metrics are reported. There are cases of drug 
screening in 3D environments [25] where the GR metrics could be applied, but since growth is often slower 
in 3D than in 2D, the application of the GR calculations should be done carefully. In Figure 2e we 
demonstrate an example where we encapsulated SKOV-3 cells grown into spheroids in a 3D hydrogel and 
dosed them with mafosfamide. In this case, the cell growth was high enough to calculate a GR50. From our 
own work we recommend reporting the GR50 when possible to best account for differences in growth rates 
between different cell sources.  We also encourage others to provide all the raw data with their publications 
to allow others to compare published results with their own (Supplemental Table 2).  
 
4. Evaluation of drug responses in biomaterials reported in literature   
 
In order to compare IC50 values between groups, we mined data from 25 papers that performed drug 
screening with biomaterial systems, and that provided raw data that we could analyze independently. We 
calculated the IC50, EC50, Emax, and AUC values and are organized them by drug in Supplemental Table 1. 
We were not able to calculate GI50 and GR50, because the initial (y0) and control (yctrl) values were not 
provided. Table 1 represents a highlighted subset of these data, containing the range of IC50 values reported 
by different groups, for cell lines tested in similar platforms with the same drug. 
 
First, we found that for highly potent drug-cell line combinations, such as MCF7 with paclitaxel or 
MDAMB231 with epirubicin, IC50 values reported did not differ much between publications (Table 1). In 
contrast, when the cell line was not particularly sensitive to the drug, like is the case of the MDA-MB-231 
cell line to paclitaxel or docetaxel, and MCF7 treatment with doxorubicin or tamoxifen, IC50 values reported 
from different groups varied significantly. This variance appears to be more dependent on the potency of 
the drug than the platform in which the cells were treated. However, when drug sensitivity was moderate or 
low, wide ranges in IC50 values tended to be even more drastic in the 3D culture models compared to 2D, 
but this was not a universal trend.  
 
One of the major challenges we encountered during our literature search was that a limited number of 
groups published their dose-response curves. Some publications did not report IC50 values for cases where 
the drug concentration did not kill half of the cell population (Table 2). Additionally, a large number of 
publications did not present enough data points to gather an IC50. Table 3 illustrates cases in which the IC50 
we independently calculated did not agree with the one reported. This was mostly the case for cell lines 
that were fairly drug insensitive. Additionally, published reports in which no metric is reported make it 
impossible to relate these reports to other published data.  
 
The drug response metric values reported in Tables 1-3 vary by lab, and they may depend on the 
type/length of assay, biomaterial used, and/or analysis conducted.  The most commonly used cell viability 
assays in our search included MTT, AlamarBlue (also called resazurin assay), Live/Dead staining, and 
CellTiter-Glo [35]. These types of assays indirectly measure the cytostatic  
or cytotoxic effect of a drug, via counting of dead cells, cell death, metabolic activity, or ATP. We 
recommend that future publications explicitly define the metrics they use, for two reasons. First, clearly 
explaining the metrics used in an article would help others learn about drug response metrics, and it would 
also prevent them from misinterpreting results. Second, definitions of the metrics are dependent on the 
context. For example, in the articles we summarized, ‘inhibition’ in IC50 refers to the inhibition of cell viability. 
In other works, however, it may refer to the inhibition of cell growth, which should be called a GI50 and 
calculated accordingly.  
 
Among the 30 papers we examined, 25 presented dose response curves from which IC50 values could be 
obtained. We used the WebPlotDigitizer Tool (https://automeris.io/WebPlotDigitizer) to extract drug 
concentrations and cell viabilities from these curves. This data was analyzed in GraphPad Prism to 
calculate an IC50, using nonlinear regression with variable slope (4 parameter) and least squares fit method. 
From the data summarized in Tables 1-3 we made comparisons between the 51 drug response curves and 



IC50 values reported in these papers. We found our results in agreement with 35 of these (69%), including 
5 cases where neither we, nor the original authors could obtain an IC50 value due to drug efficacies being 
too low. In 16 cases (31%) IC50 values were significantly different between the value reported and our own 
calculation. These differences are possible because: 1) we extracted the numerical data from plots in article 
figures, which may introduce error; 2) different researchers may have used different forms of nonlinear 
regression equation, (e.g. least squares or robust fit methods for curve fitting, fixing the hill slope to the 
standard -1, or variable slope); 3) other researchers may have chosen different methods (appropriate or 
not) to handle problems such as outliers and negative inhibition, including setting constraints on the 
maximum and minimum values, manually determining outliers, using software algorithms for automatic 
outlier detection, etc. 4) there could be cases where the IC50 could not be calculated due to the shape of 
the fitted curve, and some data analysis software will attempt to calculate an IC50 that results in an 
unrealistic value. 
 
5. Assessing drug response in multi-cellular culture systems   
The presence of stromal cells (cancer-associated fibroblasts, pericytes, or adipocytes) has been shown to 
drastically alter drug response, ranging from promoting drug resistance to increasing drug sensitivity [39-
44]. Using multicellular cultures can account for tissue level interactions and therefore may be more 
physiologically relevant than monocultures. In fact, it was recently shown that basal-like and mesenchymal-
like subclasses of breast cancer could be distinguished based on their expected drug sensitivities, but only 
in fibroblast co-cultures  [40]. While it is currently unclear how much complexity is required to accurately 
predict in vivo drug efficacy, studies that incorporate multiple cell types within biomaterials help to reveal 
the benefits of multifaceted models [41]. 
 
Incorporating stromal cells into a culture environment can complicate the assessment of drug response. 
While physically separating the cells by using either conditioned media or culture inserts can isolate the 
effects, several studies have now shown that direct cell-cell contact may be a crucial component of stromal-
derived effects on cancer cells  [45-47]. In mixed cultures, many of the common methods used to assess 
cell viability, such as MTT, alamarBlue, and CellTiter-Glo measure the response of a whole population of 
cells, and isolating the responses of just the cancer cells within a mixed population is not possible. This fact 
may not always be a significant drawback, but the presence of less susceptible stromal cells has potential 
to confound the results if overall survival apparently increases with drug treatment such that IC50 or EC50 
would be impossible to calculate [48]. The alternative is either imaging-based assays or flow cytometry.  
 
The easiest way to distinguish multiple cell populations is by using cells that express a reporter transgene 
or labeling the different cells with nontoxic dyes. Measurement of total fluorescence or bioluminescence 
provides an estimation of the labeled cell number over the course of drug treatment [48, 49]. However, 
because dead cells may remain within 3D cultures, total fluorescence readings may be less accurate. It is 
often more appropriate to stain the cells using a viability marker like propidium iodide or JC-1, then quantify 
cell viability and/or number using either confocal/multiphoton microscopy or flow cytometry [39, 40, 50]. 
This method can be used to track survival of one cell type of interest while ignoring the other cells or 
examine survival of each of multiple cell types via multiplexing of different fluorophores. Multi-cellular 
systems do require deciding which sample is more appropriate for calculating yctrl: a cancer cell only sample 
or one with all the cell types. Arguably, the respective untreated sample should be used for each treated 
sample to compensate for any effects of the stromal cells on cancer cell viability or growth rate. Additionally, 
the multiple centrifugation steps involved in harvesting and labeling cells for flow cytometry carry a risk of 
decreasing cell yield such that it would be best to seed separate samples at the start of the study for 
determining an accurate y0.  
 
An interesting prospect of using multicellular cultures is the potential to assess how altering the ratio of 
stromal to tumor cells affects a dose response curve. The in vivo tumor microenvironment is inherently 
spatially heterogeneous, and researchers are starting to examine how this cellular and extracellular 
heterogeneity may influence treatment response. Logsdon et al., found that MDA-MB-231 cells in mixed, 
3D culture with fibroblasts were more resistant to 10 µM doxorubicin at low ratios of tumor to stromal cells 
(4:1) but equally affected by the drug at higher ratios (1:4)	[39]. Shen at al., found similar results using a 
micro-patterned interface of tumor to stromal cells wherein MCF-7 cell proliferation was inhibited by 
reversine at the interface but not in the bulk [46]. Expanding these data sets to evaluate a range of drug 



doses would provide insight into how dose response varies between the tumor bulk and regions of more 
diffuse invasion.  
 
 
5. Conclusion 

Drug screening in biomaterials could be particularly useful in making better predictions in the early 
stages of drug development. However, it can be challenging to compare drug responses across different 
platforms and conditions in the current literature. This is, in part, as a result of inconsistent applications of 
drug response metrics, and differences in cell growth rates for patient cells and in/on biomaterials. For this 
reason, we suggest that multiple drug response metrics (e.g. IC50, EC50, and GR50) be used and reported 
when possible to account for possible experimental variation, initial populations, and number of cell 
divisions during an assay. To aid researchers in determining what drug response metrics can be calculated 
from their data, we have created a decision tree (Figure 3) based on the traditional dose-response curve 
and cell growth rate data that are obtained for a drug response experiment. We also encourage other 
groups to incorporate dose response curves in their reports that will allow other researchers to gather 
additional data for their analyses. We expect these recommendations will allow for less variation in reported 
metrics in the biomaterials field. In the long term, this will lead to more accurate predictions early in the drug 
development pipeline of how likely a drug will be successful in a clinical setting.  
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Figure Legends 

 
 
 
 
  

Figure 1: Definitions and examples of drug response metrics. The IC50 represents the drug concentration where the response is reduced by 
half. The EC50 represents the concentration of a drug that gives half-maximal response. The GI50 represents the concentration of a drug that 
reduces total cell growth by 50%. The GR50 represents the concentration of a drug that reduces cell growth rate by 50%. The Emax represents 
the fraction of viable cells at the highest drug concentration (maximal response), and the AUC represents the area under the dose–response 
curve. The y-axis shows the cell count (top plots) and normalized growth rate (bottom plots). Drugs are considered “cytotoxic” if viability is 
reduced below the initial value (y0), and “cytostatic” if viability is above the initial value, but below the control value (yctrl). Left curves (“Less 
potent”) show a drug which reduces viability by 50% at maximum dose, (IC50 is the maximum dose). Middle curves (“Moderately potent”) show 
a drug which completely inhibits growth, but is not cytotoxic (Emax = initial viability). Right curves (“Potent”) show a drug which is 100% cytotoxic 
(Emax = 0). Note that in these special cases some of the other metrics are also equal to each other, which are labeled on the plot. 

 

Figure 3. Decision tree for determining what drug response metrics can be calculated from drug response data. It 
is easiest to first look at a typical dose-response curve and calculate data from it. Then, depending on cell growth 
over the course of the assay, additional metrics may be calculated.  

Figure 2: a. Schematic of typical experimental work flow for a drug response assay. Cells are seeded on a 2D tissue culture plastic 
surface, on a 2D biomaterial, or within a 3D biomaterial for drug dosing. Wells in a second plate are seeded with the same conditions as 
the drug dosing plate to measure GI50 or GR50 values. After 24 hours, drugs are added to the drug dosing plate and the second plate for 
initial values is assayed simultaneously for initial cell counts. The drug dosed plate is incubated for a period of time (e.g. 48 hours) and 
then assayed for the final cell response. The collected data is used to calculate drug response metrics. b. Cells grown on tissue culture 
plastic achieve sufficient growth to generate a traditional dose response curve, as well as a GR values curve to calculate a GR50. c. An 
example of patient cells grown on tissue culture plastic that do not grow exponentially over the course of the dosing assay. This results 
in a curve for traditional drug response metrics, but a GR curve cannot be calculated. d. This is a case where cells grow over the course 
of the assay, but sufficient growth for calculating a GR50 measurement is not achieved because the resulting GR values are less than 
0.5, which is the point where the GR50 is calculated. e. Cell line spheroids encapsulated in a degradable 3D hydrogel demonstrate enough 
growth to calculate a GR50 and other drug response metrics.  
  

Table 2. Examples where IC50 was not reached (drug concentration did not kill half the cells) 

Table 1. Variation of IC50 reported for cell line-drug responses in different publications 
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