33,362 research outputs found

    Generalized (m,k)-Zipf law for fractional Brownian motion-like time series with or without effect of an additional linear trend

    Full text link
    We have translated fractional Brownian motion (FBM) signals into a text based on two ''letters'', as if the signal fluctuations correspond to a constant stepsize random walk. We have applied the Zipf method to extract the ζ\zeta ' exponent relating the word frequency and its rank on a log-log plot. We have studied the variation of the Zipf exponent(s) giving the relationship between the frequency of occurrence of words of length m<8m<8 made of such two letters: ζ\zeta ' is varying as a power law in terms of mm. We have also searched how the ζ\zeta ' exponent of the Zipf law is influenced by a linear trend and the resulting effect of its slope. We can distinguish finite size effects, and results depending whether the starting FBM is persistent or not, i.e. depending on the FBM Hurst exponent HH. It seems then numerically proven that the Zipf exponent of a persistent signal is more influenced by the trend than that of an antipersistent signal. It appears that the conjectured law ζ=2H1\zeta ' = |2H-1| only holds near H=0.5H=0.5. We have also introduced considerations based on the notion of a {\it time dependent Zipf law} along the signal.Comment: 24 pages, 12 figures; to appear in Int. J. Modern Phys

    Modulation of ecdysal cyst and toxin dynamics of two Alexandrium (Dinophyceae) species under small-scale turbulence

    Get PDF
    Some dinoflagellate species have shown different physiological responses to certain turbulent conditions. Here we investigate how two levels of turbulent kinetic energy dissipation rates (epsilon = 0.4 and 27 cm(2) s(-3)) affect the PSP toxins and ecdysal cyst dynamics of two bloom forming species, Alexandrium minutum and A. catenella. The most striking responses were observed at the high epsilon generated by an orbital shaker. In the cultures of the two species shaken for more than 4 days, the cellular GTX(1+4) toxin contents were significantly lower than in the still control cultures. In A. minutum this trend was also observed in the C(1+2) toxin content. For the two species, inhibition of ecdysal cyst production occurred during the period of exposure of the cultures to stirring (4 or more days) at any time during their growth curve. Recovery of cyst abundances was always observed when turbulence stopped. When shaking persisted for more than 4 days, the net growth rate significantly decreased in A. minutum (from 0.25 +/- 0.01 day(-1) to 0.19 +/- 0.02 day(-1)) and the final cell numbers were lower (ca. 55.4%) than in the still control cultures. In A. catenella, the net growth rate was not markedly modified by turbulence although under long exposure to shaking, the cultures entered earlier in the stationary phase and the final cell numbers were significantly lower (ca. 23%) than in the control flasks. The described responses were not observed in the experiments performed at the low turbulence intensities with an orbital grid system, where the population development was favoured. In those conditions, cells appeared to escape from the zone of the influence of the grids and concentrated in calmer thin layers either at the top or at the bottom of the containers. This ecophysiological study provides new evidences about the sensitivity to high levels of small-scale turbulence by two life cycle related processes, toxin production and encystment, in dinoflagellates. This can contribute to the understanding of the dynamics of those organisms in nature

    Testing Lorentz Invariance by Comparing Light Propagation in Vacuum and Matter

    Full text link
    We present a Michelson-Morley type experiment for testing the isotropy of the speed of light in vacuum and matter. The experiment compares the resonance frequency of a monolithic optical sapphire resonator with the resonance frequency of an orthogonal evacuated optical cavity made of fused silica while the whole setup is rotated on an air bearing turntable once every 45 s. Preliminary results yield an upper limit for the anisotropy of the speed of light in matter (sapphire) of \Delta c/c < 4x10^(-15), limited by the frequency stability of the sapphire resonator operated at room temperature. Work to increase the measurement sensitivity by more than one order of magnitude by cooling down the sapphire resonator to liquid helium temperatures (LHe) is currently under way.Comment: Presented at the Fifth Meeting on CPT and Lorentz Symmetry, Bloomington, Indiana, June 28-July 2, 201

    Precision CW laser automatic tracking system investigated

    Get PDF
    Precision laser tracker capable of tracking a low acceleration target to an accuracy of about 20 microradians rms is being constructed and tested. This laser tracking has the advantage of discriminating against other optical sources and the capability of simultaneously measuring range

    Paleoecology and paleoceanography of the Athel silicilyte, Ediacaran-Cambrian boundary, Sultanate of Oman

    Get PDF
    The Athel silicilyte is an enigmatic, hundreds of meters thick, finely laminated quartz deposit, in which silica precipitated in deep water (>~100–200 m) at the Ediacaran–Cambrian boundary in the South Oman Salt Basin. In contrast, Meso-Neoproterozoic sinks for marine silica were dominantly restricted to peritidal settings. The silicilyte is known to contain sterane biomarkers for demosponges, which today are benthic, obligately aerobic organisms. However, the basin has previously been described as permanently sulfidic and time-equivalent shallow-water carbonate platform and evaporitic facies lack silica. The Athel silicilyte thus represents a unique and poorly understood depositional system with implications for late Ediacaran marine chemistry and paleoecology. To address these issues, we made petrographic observations, analyzed biomarkers in the solvent-extractable bitumen, and measured whole-rock iron speciation and oxygen and silicon isotopes. These data indicate that the silicilyte is a distinct rock type both in its sedimentology and geochemistry and in the original biology present as compared to other facies from the same time period in Oman. The depositional environment of the silicilyte, as compared to the bounding shales, appears to have been more reducing at depth in sediments and possibly bottom waters with a significantly different biological community contributing to the preserved biomarkers. We propose a conceptual model for this system in which deeper, nutrient-rich waters mixed with surface seawater via episodic mixing, which stimulated primary production. The silica nucleated on this organic matter and then sank to the seafloor, forming the silicilyte in a sediment-starved system. We propose that the silicilyte may represent a type of environment that existed elsewhere during the Neoproterozoic. These environments may have represented an important locus for silica removal from the oceans

    Unconventional carrier-mediated ferromagnetism above room temperature in ion-implanted (Ga, Mn)P:C

    Full text link
    Ion implantation of Mn ions into hole-doped GaP has been used to induce ferromagnetic behavior above room temperature for optimized Mn concentrations near 3 at.%. The magnetism is suppressed when the Mn dose is increased or decreased away from the 3 at.% value, or when n-type GaP substrates are used. At low temperatures the saturated moment is on the order of one Bohr magneton, and the spin wave stiffness inferred from the Bloch-law T^3/2 dependence of the magnetization provides an estimate Tc = 385K of the Curie temperature that exceeds the experimental value, Tc = 270K. The presence of ferromagnetic clusters and hysteresis to temperatures of at least 330K is attributed to disorder and proximity to a metal-insulating transition.Comment: 4 pages, 4 figures (RevTex4

    A hybrid model for chaotic front dynamics: From semiconductors to water tanks

    Full text link
    We present a general method for studying front propagation in nonlinear systems with a global constraint in the language of hybrid tank models. The method is illustrated in the case of semiconductor superlattices, where the dynamics of the electron accumulation and depletion fronts shows complex spatio-temporal patterns, including chaos. We show that this behavior may be elegantly explained by a tank model, for which analytical results on the emergence of chaos are available. In particular, for the case of three tanks the bifurcation scenario is characterized by a modified version of the one-dimensional iterated tent-map.Comment: 4 pages, 4 figure
    corecore