914 research outputs found

    Quarkonium production via recombination

    Full text link
    The contrast between model predictions for the transverse momentum spectra of J/Psi observed in Au-Au collisions at RHIC is extended to include effects of nuclear absorption. We find that the difference between initial production and recombination is enhanced in the most central collisions. Models utilizing a combination of these sources may eventually be able to place constraints on their relative magnitudes.Comment: Based on invited plenary talk at the 2nd International Conference on Hard and Electromagnetic Probes of High-Energy Nuclear Collisions, Asilomar, CA, June 9-16, 2006, to be published in Nucl. Phys.

    443 CELLULAR AND BIOMECHANICAL SEGMENTAL CHARACTERIZATION OF HUMAN MENISCUS

    Get PDF

    J/ψJ/\psi production in PHENIX

    Full text link
    Heavy quarkonia production is expected to be sensitive to the formation of a quark gluon plasma (QGP). The PHENIX experiment has measured J/ψJ/\psi production at sNN=\sqrt{s_{NN}}=~200 GeV in Au+Au and Cu+Cu collisions, as well as in reference p+p and d+Au runs. J/ψJ/\psi's were measured both at mid (y<0.35|y|<0.35) and forward (1.2<y<2.21.2<|y|<2.2) rapidity. In this letter, we present the A+A preliminary results and compare them to normal cold nuclear matter expectations derived from PHENIX d+Au and p+p measurements as well as to theoretical models including various effects (color screening, recombination, sequential melting...).Comment: 5 pages, 7 figures. To appear in the proceedings of Hot Quarks 2006: Workshop for Young Scientists on the Physics of Ultrarelativistic Nucleus-Nucleus Collisions, Villasimius, Italy, 15-20 May 200

    Porphyrin–nanodiamond hybrid materials—active, stable and reusable cyclohexene oxidation catalysts

    Get PDF
    funded by FCT-Foundation for Science and Technology, I.P., under projects UIDB/00313/2020; PTDC/QUI-OUT/27996/2017 (DUALPI); POCI-01-0145-FEDER-027996; POCI-01-0145-FEDER-016387; UIDB/50006/2020 (Associate Laboratory for Green Chemistry-LAQV); MATIS (CENTRO-010145-FEDER-00014); Base Funding-UIDB/50020/2020 of the Associate Laboratory LSRE-LCM-funded by national funds through FCT/MCTES (PIDDAC); and 5625-DRI-DAAD-2020/21. SACC also acknowledges FCT Investigador FCT program (IF/01381/2013/CP1160/CT0007) and Scientific Employment Stimulus -Institutional Call (CEECINST/00102/2018). The authors also thank Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP) for CEPOF 2013/07276-1, and INCT "Basic Optics and Applied to Life Sciences" (FAPESP 2014/50857-8, CNPq 465360/2014-9). A.R.L. Caires acknowledges CAPES-PrInt funding program (grant number 88887.353061/2019-00 and 88881.311921/2018-01). J.G.B. thanks the Dutch Research Council (NWO) for funding as a part of the Open Technology Programme (project number 16361). L.D. Dias thanks FAPESP for the Post-doc grant 2019/13569-8. F.M.S.R. thanks FCT for the PhD grant (PD/BD/114340/2016).The quest for active, yet “green” non-toxic catalysts is a continuous challenge. In this work, covalently linked hybrid porphyrin–nanodiamonds were prepared via ipso nitro substitution reaction and characterized by X-ray photoelectron spectroscopy (XPS), fluorescence spectroscopy, infrared spectroscopy (IR) and thermogravimetry-differential scanning calorimetry (TG-DSC). The amine-functionalized nanodiamonds (ND@NH2 ) and 2-nitro-5,10,15,20-tetra(4-trifluoromethylphenyl)porphyrin covalently linked to nanodiamonds (ND@βNH-TPPpCF3 ) were tested using Allium cepa as a plant model, and showed neither phytotoxicity nor cytotoxicity. The hybrid nanodiamond–copper(II)–porphyrin material ND@βNH-TPPpCF3-Cu(II) was also evaluated as a reusable catalyst in cyclohexene allylic oxidation, and displayed a remarkable turnover number (TON) value of ≈265,000, using O2 as green oxidant, in the total absence of sacrificial additives, which is the highest activity ever reported for said allylic oxidation. Additionally, ND@βNH-TPPpCF3-Cu(II) could be easily separated from the reaction mixture by centrifugation, and reused in three consecutive catalytic cycles without major loss of activity.publishersversionpublishe

    Genome And Secretome Analysis Of The Hemibiotrophic Fungal Pathogen, Moniliophthora Roreri, Which Causes Frosty Pod Rot Disease Of Cacao: Mechanisms Of The Biotrophic And Necrotrophic Phases

    Get PDF
    Background: The basidiomycete Moniliophthora roreri is the causal agent of Frosty pod rot (FPR) disease of cacao (Theobroma cacao), the source of chocolate, and FPR is one of the most destructive diseases of this important perennial crop in the Americas. This hemibiotroph infects only cacao pods and has an extended biotrophic phase lasting up to sixty days, culminating in plant necrosis and sporulation of the fungus without the formation of a basidiocarp.Results: We sequenced and assembled 52.3 Mb into 3,298 contigs that represent the M. roreri genome. Of the 17,920 predicted open reading frames (OFRs), 13,760 were validated by RNA-Seq. Using read count data from RNA sequencing of cacao pods at 30 and 60 days post infection, differential gene expression was estimated for the biotrophic and necrotrophic phases of this plant-pathogen interaction. The sequencing data were used to develop a genome based secretome for the infected pods. Of the 1,535 genes encoding putative secreted proteins, 1,355 were expressed in the biotrophic and necrotrophic phases. Analysis of the data revealed secretome gene expression that correlated with infection and intercellular growth in the biotrophic phase and invasive growth and plant cellular death in the necrotrophic phase.Conclusions: Genome sequencing and RNA-Seq was used to determine and validate the Moniliophthora roreri genome and secretome. High sequence identity between Moniliophthora roreri genes and Moniliophthora perniciosa genes supports the taxonomic relationship with Moniliophthora perniciosa and the relatedness of this fungus to other basidiomycetes. Analysis of RNA-Seq data from infected plant tissues revealed differentially expressed genes in the biotrophic and necrotrophic phases. The secreted protein genes that were upregulated in the biotrophic phase are primarily associated with breakdown of the intercellular matrix and modification of the fungal mycelia, possibly to mask the fungus from plant defenses. Based on the transcriptome data, the upregulated secreted proteins in the necrotrophic phase are hypothesized to be actively attacking the plant cell walls and plant cellular components resulting in necrosis. These genes are being used to develop a new understanding of how this disease interaction progresses and to identify potential targets to reduce the impact of this devastating disease. © 2014 Meinhardt et al.; licensee BioMed Central Ltd.151USDA; U.S. Department of AgricultureLatunde-Dada, A.O., Colletotrichum: tales of forcible entry, stealth, transient confinement and breakout (2001) Mol Plant Pathol, 2 (4), pp. 187-198. , 10.1046/j.1464-6722.2001.00069.x, 20573006Oliver, R.P., Ipcho, S.V.S., Arabidopsis pathology breathes new life into the necrotrophs-vs.-biotrophs classification of fungal pathogens (2004) Mol Plant Pathol, 5 (4), pp. 347-352. , 10.1111/j.1364-3703.2004.00228.x, 20565602Catanzariti, A.M., Dodds, P.N., Lawrence, G.J., Ayliffe, M.A., Ellis, J.G., Haustorially expressed secreted proteins from flax rust are highly enriched for avirulence elicitors (2006) Plant Cell, 18 (1), pp. 243-256. , 10.1105/tpc.105.035980, 1323496, 16326930Link, T.I., Voegele, R.T., Secreted proteins of Uromyces fabae: similarities and stage specificity (2008) Mol Plant Pathol, 9 (1), pp. 59-66Brown, N.A., Antoniw, J., Hammond-Kosack, K.E., The predicted secretome of the plant pathogenic fungus Fusarium graminearum: a refined comparative analysis (2012) Plos One, 7 (4), pp. e33731. , 10.1371/journal.pone.0033731, 3320895, 22493673Thomma, B.P., Alternaria spp.: from general saprophyte to specific parasite (2003) Mol Plant Pathol, 4 (4), pp. 225-236. , 10.1046/j.1364-3703.2003.00173.x, 20569383Evans, H.C., Stalpers, J.A., Samson, R.A., Benny, G.L., Taxonomy of Monilia-Roreri, an important pathogen of theobroma-cacao in South-America (1978) Can J Bot, 56 (20), pp. 2528-2532Aime, M.C., Phillips-Mora, W., The causal agents of witches' broom and frosty pod rot of cacao (chocolate, Theobroma cacao) form a new lineage of Marasmiaceae (2005) Mycologia, 97 (5), pp. 1012-1022. , 10.3852/mycologia.97.5.1012, 16596953Phillips-Mora, W., Wilkinson, M.J., Frosty pod of cacao: a disease with a limited geographic range but unlimited potential for damage (2007) Phytopathology, 97 (12), pp. 1644-1647. , 10.1094/PHYTO-97-12-1644, 18943726Meinhardt, L.W., Rincones, J., Bailey, B.A., Aime, M.C., Griffith, G.W., Zhang, D.P., Pereira, G.A.G., Moniliophthora perniciosa, the causal agent of witches' broom disease of cacao: what's new from this old foe? (2008) Mol Plant Pathol, 9 (5), pp. 577-588. , 10.1111/j.1364-3703.2008.00496.x, 19018989Ferreira, L.F.R., Duarte, K.M.R., Gomes, L.H., Carvalho, R.S., Leal, G.A., Aguiar, M.M., Armas, R.D., Tavares, F.C.A., Genetic diversity of polysporic isolates of Moniliophthora perniciosa (Tricholomataceae) (2012) Genet Mol Res, 11 (3), pp. 2559-2568. , 10.4238/2012.July.10.11, 22869076Phillips-Mora, W., Wilkinson, M.J., Frosty pod: a disease of limited geographic distribution but unlimited potential for damage (2006) Phytopathology, 96 (6), pp. S138-S138Evans, H.C., (1981) Pod Rot of Cacao caused by Moniliophthora (Monilia) roreri, , London: Commonwealth Agricultural Bureau, 24Joosten, M., de Wit, P., THE TOMATO-CLADOSPORIUM FULVUM INTERACTION: a versatile experimental system to study plant-pathogen interactions (1999) Annu Rev Phytopathol, 37, pp. 335-367. , 10.1146/annurev.phyto.37.1.335, 11701827Perfect, S.E., Green, J.R., Infection structures of biotrophic and hemibiotrophic fungal plant pathogens (2001) Mol Plant Pathol, 2 (2), pp. 101-108. , 10.1046/j.1364-3703.2001.00055.x, 20572997Scarpari, L.M., Meinhardt, L.W., Mazzafera, P., Pomella, A.W.V., Schiavinato, M.A., Cascardo, J.C.M., Pereira, G.A.G., Biochemical changes during the development of witches' broom: the most important disease of cocoa in Brazil caused by Crinipellis perniciosa (2005) J Exp Bot, 56 (413), pp. 865-877. , 10.1093/jxb/eri079, 15642708Melnick, R.L., Marelli, J., Bailey, B.A., The molecular interaction of Theobroma cacao and Moniliophthora perniciosa, causal agent of witches' broom, during infection of young pods (2011) Phytopathology, 101 (6), pp. S274-S274Melnick, R.L., Marelli, J.P., Sicher, R.C., Strem, M.D., Bailey, B.A., The interaction of Theobroma cacao and Moniliophthora perniciosa, the causal agent of witches' broom disease, during parthenocarpy (2012) Tree Genet Genomes, 8 (6), pp. 1261-1279Thomazella, D.P., Teixeira, P.J., Oliveira, H.C., Saviani, E.E., Rincones, J., Toni, I.M., Reis, O., Pereira, G.A., The hemibiotrophic cacao pathogen Moniliophthora perniciosa depends on a mitochondrial alternative oxidase for biotrophic development (2012) New Phytol, 194 (4), pp. 1025-1034. , 10.1111/j.1469-8137.2012.04119.x, 3415677, 22443281Mondego, J.M., Carazzolle, M.F., Costa, G.G., Formighieri, E.F., Parizzi, L.P., Rincones, J., Cotomacci, C., Pereira, G.A.G., A genome survey of Moniliophthora perniciosa gives new insights into Witches' Broom disease of cacao (2008) Bmc Genomics, 9, p. 548. , 10.1186/1471-2164-9-548, 2644716, 19019209Bailey, B.A., Crozier, J., Sicher, R.C., Strem, M.D., Melnick, R., Carazzolle, M.F., Costa, G.G.L., Meinhardt, L., Dynamic changes in pod and fungal physiology associated with the shift from biotrophy to necrotrophy during the infection of Theobroma cacao by Moniliophthora roreri (2013) Physiol Mol Plant P, 81, pp. 84-96Henrissat, B., A classification of glycosyl hydrolases based on amino acid sequence similarities (1991) Biochem J, 280 (PART 2), pp. 309-316. , 1130547, 1747104Dias, F.M., Vincent, F., Pell, G., Prates, J.A., Centeno, M.S., Tailford, L.E., Ferreira, L.M., Gilbert, H.J., Insights into the molecular determinants of substrate specificity in glycoside hydrolase family 5 revealed by the crystal structure and kinetics of Cellvibrio mixtus mannosidase 5A (2004) J Biol Chem, 279 (24), pp. 25517-25526. , 10.1074/jbc.M401647200, 15014076Fibriansah, G., Masuda, S., Koizumi, N., Nakamura, S., Kumasaka, T., The 1.3 A crystal structure of a novel endo-beta-1,3-glucanase of glycoside hydrolase family 16 from alkaliphilic Nocardiopsis sp. strain F96 (2007) Proteins, 69 (3), pp. 683-690. , 10.1002/prot.21589, 17879342Markovic, O., Janecek, S., Pectin degrading glycoside hydrolases of family 28: sequence-structural features, specificities and evolution (2001) Protein Eng, 14 (9), pp. 615-631. , 10.1093/protein/14.9.615, 11707607Vandermarliere, E., Bourgois, T.M., Winn, M.D., van Campenhout, S., Volckaert, G., Delcour, J.A., Strelkov, S.V., Courtin, C.M., Structural analysis of a glycoside hydrolase family 43 arabinoxylan arabinofuranohydrolase in complex with xylotetraose reveals a different binding mechanism compared with other members of the same family (2009) Biochem J, 418 (1), pp. 39-47. , 10.1042/BJ20081256, 18980579Tiels, P., Baranova, E., Piens, K., De Visscher, C., Pynaert, G., Nerinckx, W., Stout, J., Callewaert, N., A bacterial glycosidase enables mannose-6-phosphate modification and improved cellular uptake of yeast-produced recombinant human lysosomal enzymes (2012) Nat Biotechnol, 30 (12), pp. 1225-1231. , 10.1038/nbt.2427, 23159880Ferreira, P., Hernandez-Ortega, A., Herguedas, B., Martinez, A.T., Medina, M., Aryl-alcohol oxidase involved in lignin degradation: a mechanistic study based on steady and pre-steady state kinetics and primary and solvent isotope effects with two alcohol substrates (2009) J Biol Chem, 284 (37), pp. 24840-24847. , 10.1074/jbc.M109.011593, 2757187, 19574215Mayer, A.M., Staples, R.C., Laccase: new functions for an old enzyme (2002) Phytochemistry, 60 (6), pp. 551-565. , 10.1016/S0031-9422(02)00171-1, 12126701Kersten, P.J., Glyoxal oxidase of Phanerochaete chrysosporium: its characterization and activation by lignin peroxidase (1990) Proc Natl Acad Sci U S A, 87 (8), pp. 2936-2940. , 10.1073/pnas.87.8.2936, 53808, 11607073Henrissat, B., Callebaut, I., Fabrega, S., Lehn, P., Mornon, J.P., Davies, G., Conserved catalytic machinery and the prediction of a common fold for several families of glycosyl hydrolases (1995) Proc Natl Acad Sci U S A, 92 (15), pp. 7090-7094. , 10.1073/pnas.92.15.7090, 41477, 7624375Wostemeyer, J., Kreibich, A., Repetitive DNA elements in fungi (Mycota): impact on genomic architecture and evolution (2002) Curr Genet, 41 (4), pp. 189-198. , 10.1007/s00294-002-0306-y, 12172959Goffeau, A., Barrell, B.G., Bussey, H., Davis, R.W., Dujon, B., Feldmann, H., Galibert, F., Oliver, S.G., Life with 6000 genes (1996) Science, 274 (5287), pp. 546-563. , 547, 10.1126/science.274.5287.546, 8849441Dean, R.A., Talbot, N.J., Ebbole, D.J., Farman, M.L., Mitchell, T.K., Orbach, M.J., Thon, M., Nicol, R., The genome sequence of the rice blast fungus Magnaporthe grisea (2005) Nature, 434 (7036), pp. 980-986. , 10.1038/nature03449, 15846337Labbe, J., Murat, C., Morin, E., Tuskan, G.A., Le Tacon, F., Martin, F., Characterization of transposable elements in the ectomycorrhizal fungus Laccaria bicolor (2012) Plos One, 7 (8), pp. e40197. , 10.1371/journal.pone.0040197, 3411680, 22870194Adomako, D., Cocoa pod husk pectin (1972) Phytochemistry, 11 (3), p. 1145Gan, P., Ikeda, K., Irieda, H., Narusaka, M., O'Connell, R.J., Narusaka, Y., Takano, Y., Shirasu, K., Comparative genomic and transcriptomic analyses reveal the hemibiotrophic stage shift of Colletotrichum fungi (2013) New Phytol, 197 (4), pp. 1236-1249. , 10.1111/nph.12085, 23252678Garcia, O., Macedo, J.A.N., Tiburcio, R., Zaparoli, G., Rincones, J., Bittencourt, L.M.C., Ceita, G.O., Cascardo, J.C., Characterization of necrosis and ethylene-inducing proteins (NEP) in the basidiomycete Moniliophthora perniciosa, the causal agent of witches' broom in Theobroma cacao (2007) Mycol Res, 111, pp. 443-455. , 10.1016/j.mycres.2007.01.017, 17512713Pemberton, C.L., Salmond, G.P., The Nep1-like proteins-a growing family of microbial elicitors of plant necrosis (2004) Mol Plant Pathol, 5 (4), pp. 353-359. , 10.1111/j.1364-3703.2004.00235.x, 20565603Zaparoli, G., Barsottini, M.R., de Oliveira, J.F., Dyszy, F., Teixeira, P.J., Barau, J.G., Garcia, O., Dias, S.M., The crystal structure of necrosis-and ethylene-inducing protein 2 from the causal agent of cacao's Witches' Broom disease reveals key elements for its activity (2011) Biochemistry-Us, 50 (45), pp. 9901-9910Cabral, A., Oome, S., Sander, N., Kufner, I., Nurnberger, T., Van den Ackerveken, G., Nontoxic Nep1-like proteins of the downy mildew pathogen Hyaloperonospora arabidopsidis: repression of necrosis-inducing activity by a surface-exposed region (2012) Mol Plant Microbe Interact, 25 (5), pp. 697-708. , 10.1094/MPMI-10-11-0269, 22235872Mosquera, G., Giraldo, M.C., Khang, C.H., Coughlan, S., Valent, B., Interaction transcriptome analysis identifies magnaporthe oryzae BAS1-4 as Biotrophy-associated secreted proteins in rice blast disease (2009) Plant Cell, 21 (4), pp. 1273-1290. , 10.1105/tpc.107.055228, 2685627, 19357089Paper, J.M., Scott-Craig, J.S., Adhikari, N.D., Cuomo, C.A., Walton, J.D., Comparative proteomics of extracellular proteins in vitro and in planta from the pathogenic fungus Fusarium graminearum (2007) Proteomics, 7 (17), pp. 3171-3183. , 10.1002/pmic.200700184, 17676664van den Burg, H.A., Harrison, S.J., Joosten, M.H., Vervoort, J., de Wit, P.J., Cladosporium fulvum Avr4 protects fungal cell walls against hydrolysis by plant chitinases accumulating during infection (2006) Mol Plant Microbe Interact, 19 (12), pp. 1420-1430. , 10.1094/MPMI-19-1420, 17153926Roby, D., Gadelle, A., Toppan, A., Chitin oligosaccharides as elicitors of chitinase activity in melon plants (1987) Biochem Biophys Res Commun, 143 (3), pp. 885-892. , 10.1016/0006-291X(87)90332-9, 3566760Deising, H., Siegrist, J., Chitin deacetylase activity of the rust uromyces-viciae-fabae is controlled by fungal morphogenesis (1995) Fems Microbiol Lett, 127 (3), pp. 207-211Teixeira, P.J.P.L., Thomazella, D.P.T., Vidal, R.O., Do Prado, P.F.V., Reis, O., Baroni, R.M., Franco, S.F., Mondego, J.M.C., The fungal pathogen moniliophthora perniciosa has genes similar to plant PR-1 that are highly expressed during its interaction with cacao (2012) Plos One, 7 (9)Riviere, M.P., Marais, A., Ponchet, M., Willats, W., Galiana, E., Silencing of acidic pathogenesis-related PR-1 genes increases extracellular beta-(1→ 3)-glucanase activity at the onset of tobacco defence reactions (2008) J Exp Bot, 59 (6), pp. 1225-1239. , 10.1093/jxb/ern044, 18390849Levy, A., Guenoune-Gelbart, D., Epel, B.L., Beta-1,3-Glucanases: plasmodesmal gate keepers for intercellular communication (2007) Plant Signal Behav, 2 (5), pp. 404-407. , 10.4161/psb.2.5.4334, 2634228, 19704615Prados-Rosales, R.C., Roldan-Rodriguez, R., Serena, C., Lopez-Berges, M.S., Guarro, J., Martinez-del-Pozo, A., Di Pietro, A., A PR-1-like protein of fusarium oxysporum functions in virulence on mammalian hosts (2012) J Biol Chem, 287 (26), pp. 21970-21979. , 10.1074/jbc.M112.364034, 3381157, 22553200Kershaw, M.J., Talbot, N.J., Hydrophobins and repellents: proteins with fundamental roles in fungal morphogenesis (1998) Fungal Genet Biol, 23 (1), pp. 18-33. , 10.1006/fgbi.1997.1022, 9501475Zelena, K., Takenberg, M., Lunkenbein, S., Woche, S.K., Nimtz, M., Berger, R.G., PfaH2: a novel hydrophobin from the ascomycete Paecilomyces farinosus (2013) Biotechnol Appl Biochem, 60 (2), pp. 147-154. , 10.1002/bab.1077, 23600571Wosten, H.A., Hydrophobins: multipurpose proteins (2001) Annu Rev Microbiol, 55, pp. 625-646. , 10.1146/annurev.micro.55.1.625, 11544369Bayry, J., Aimanianda, V., Guijarro, J.I., Sunde, M., Latge, J.P., Hydrophobins-unique fungal proteins (2012) PLoS Pathog, 8 (5), pp. e1002700. , 10.1371/journal.ppat.1002700, 3364958, 22693445De Oliveira, A.L., Gallo, M., Pazzagli, L., Benedetti, C.E., Cappugi, G., Scala, A., Pantera, B., Cicero, D.O., The structure of the elicitor cerato-platanin (CP), the first member of the CP fungal protein family, reveals a double psi beta-barrel fold and carbohydrate binding (2011) J Biol Chem, 286 (20), pp. 17560-17568. , 10.1074/jbc.M111.223644, 3093830, 21454637Baccelli, I., Comparini, C., Bettini, P.P., Martellini, F., Ruocco, M., Pazzagli, L., Bernardi, R., Scala, A., The expression of the cerato-platanin gene is related to hyphal growth and chlamydospores formation in Ceratocystis platani (2012) Fems Microbiol Lett, 327 (2), pp. 155-163. , 10.1111/j.1574-6968.2011.02475.x, 22136757Zaparoli, G., Cabrera, O.G., Medrano, F.J., Tiburcio, R., Lacerda, G., Pereira, G.G., Identification of a second family of genes in Moniliophthora perniciosa, the causal agent of witches' broom disease in cacao, encoding necrosis-inducing proteins similar to cerato-platanins (2009) Mycol Res, 113, pp. 61-72. , 10.1016/j.mycres.2008.08.004, 18796332Lombardi, L., Faoro, F., Luti, S., Baccelli, I., Martellini, F., Bernardi, R., Picciarelli, P., Pazzagli, L., Differential timing of defense-related responses induced by cerato-platanin and cerato-populin, two non-catalytic fungal elicitors (2013) Physiol Plant, 149, pp. 408-421Yang, Y., Zhang, H., Li, G., Li, W., Wang, X., Song, F., Ectopic expression of MgSM1, a Cerato-platanin family protein from Magnaporthe grisea, confers broad-spectrum disease resistance in Arabidopsis (2009) Plant Biotechnol J, 7 (8), pp. 763-777. , 10.1111/j.1467-7652.2009.00442.x, 19754836Bhadauria, V., Banniza, S., Vandenberg, A., Selvaraj, G., Wei, Y., EST mining identifies proteins putatively secreted by the anthracnose pathogen Colletotrichum truncatum (2011) Bmc Genomics, 12, p. 327. , 10.1186/1471-2164-12-327, 3149586, 21699715Frischmann, A., Neudl, S., Gaderer, R., Bonazza, K., Zach, S., Gruber, S., Spadiut, O., Seidl-Seiboth, V., Self-assembly at air/water interfaces and carbohydrate binding properties of the small secreted protein EPL1 from the fungus trichoderma atroviride (2013) J Biol Chem, 288 (6), pp. 4278-4287. , 10.1074/jbc.M112.427633, 3567679, 23250741Jeong, J.S., Mitchell, T.K., Dean, R.A., The magnaporthe grisea snodprot1 homolog, MSP1, is required for virulence (2007) Fems Microbiol Lett, 273 (2), pp. 157-165. , 10.1111/j.1574-6968.2007.00796.x, 17590228Peter, M., Courty, P.E., Kohler, A., Delaruelle, C., Martin, D., Tagu, D., Frey-Klett, P., Martin, F., Analysis of expressed sequence tags from the ectomycorrhizal basidiomycetes Laccaria bicolor and Pisolithus microcarpus (2003) New Phytol, 159 (1), pp. 117-129Cosgrove, D.J., Loosening of plant cell walls by expansins (2000) Nature, 407 (6802), pp. 321-326. , 10.1038/35030000, 11014181Quiroz-Castaneda, R.E., Martinez-Anaya, C., Cuervo-Soto, L.I., Segovia, L., Folch-Mallol, J.L., Loosenin, a novel protein with cellulose-disrupting activity from Bjerkandera adusta (2011) Microb Cell Fact, 10, p. 8. , 10.1186/1475-2859-10-8, 3050684, 21314954Brotman, Y., Briff, E., Viterbo, A., Chet, I., Role of swollenin, an expansin-like protein from Trichoderma, in plant root colonization (2008) Plant Physiol, 147 (2), pp. 779-789. , 10.1104/pp.108.116293, 2409044, 18400936Yamada, M., Sakuraba, S., Shibata, K., Taguchi, G., Inatomi, S., Okazaki, M., Shimosaka, M., Isolation and analysis of genes specifically expressed during fruiting body development in the basidiomycete Flammulina velutipes by fluorescence differential display (2006) Fems Microbiol Lett, 254 (1), pp. 165-172. , 10.1111/j.1574-6968.2005.00023.x, 16451195Rincones, J., Scarpari, L.M., Carazzolle, M.F., Mondego, J.M.C., Formighieri, E.F., Barau, J.G., Costa, G.G.L., Pereira, G.A., Differential gene expression between the biotrophic-like and saprotrophic mycelia of the witches' broom pathogen Moniliophthora perniciosa (2008) Mol Plant Microbe In, 21 (7), pp. 891-908Zerbino, D.R., Birney, E., Velvet: algorithms for de novo short read assembly using de Bruijn graphs (2008) Genome Res, 18 (5), pp. 821-829. , 10.1101/gr.074492.107, 2336801, 18349386Sommer, D.D., Delcher, A.L., Salzberg, S.L., Pop, M., Minimus: a fast, lightweight genome assembler (2007) BMC Bioinforma, 8, p. 64Ter-Hovhannisyan, V., Lomsadze, A., Chernoff, Y.O., Borodovsky, M., Gene prediction in novel fungal genomes using an ab initio algorithm with unsupervised training (2008) Genome Res, 18 (12), pp. 1979-1990. , 10.1101/gr.081612.108, 2593577, 18757608Stanke, M., Keller, O., Gunduz, I., Hayes, A., Waack, S., Morgenstern, B., AUGUSTUS: ab initio prediction of alternative transcripts (2006) Nucleic Acids Res, 34, pp. W435-W439. , Web Server issue, 1538822, 16845043Stanke, M., Tzvetkova, A., Morgenstern, B., AUGUSTUS at EGASP: using EST, protein and genomic alignments for improved gene prediction in the human genome (2006) Genome Biol, 7 (SUPPL. 1), pp. S11 11-18Slater, G.S., Birney, E., Automated generation of heuristics for biological sequence comparison (2005) BMC Bioinforma, 6, p. 31Borodovsky, M., Lomsadze, A., Ivanov, N., Mills, R., Eukaryotic gene prediction using GeneMark.hmm (2003) Curr Protoc Bioinformatics, , Chapter 4, Unit4 6Haas, B.J., Salzberg, S.L., Zhu, W., Pertea, M., Allen, J.E., Orvis, J., White, O., Wortman, J.R., Automated eukaryotic gene structure annotation using EVidenceModeler and the program to assemble spliced alignments (2008) Genome Biol, 9 (1), pp. R7. , 10.1186/gb-2008-9-1-r7, 2395244, 18190707Koski, L.B., Gray, M.W., Lang, B.F., Burger, G., AutoFACT: an automatic functional annotation and classification tool (2005) BMC Bioinforma, 6, p. 151Suzek, B.E., Huang, H., McGarvey, P., Mazumder, R., Wu, C.H., UniRef: comprehensive and non-redundant UniProt reference clusters (2007) Bioinformatics, 23 (10), pp. 1282-1288. , 10.1093/bioinformatics/btm098, 17379688Bateman, A., Birney, E., Cerruti, L., Durbin, R., Etwiller, L., Eddy, S.R., Griffiths-Jones, S., Sonnhammer, E.L., The Pfam protein families database (2002) Nucleic Acids Res, 30 (1), pp. 276-280. , 10.1093/nar/30.1.276, 99071,

    Ionization degree of the electron-hole plasma in semiconductor quantum wells

    Get PDF
    The degree of ionization of a nondegenerate two-dimensional electron-hole plasma is calculated using the modified law of mass action, which takes into account all bound and unbound states in a screened Coulomb potential. Application of the variable phase method to this potential allows us to treat scattering and bound states on the same footing. Inclusion of the scattering states leads to a strong deviation from the standard law of mass action. A qualitative difference between mid- and wide-gap semiconductors is demonstrated. For wide-gap semiconductors at room temperature, when the bare exciton binding energy is of the order of T, the equilibrium consists of an almost equal mixture of correlated electron-hole pairs and uncorrelated free carriers.Comment: 22 pages, 6 figure

    Consensus definition of advance care planning in dementia: A 33-country Delphi study.

    Get PDF
    Existing advance care planning (ACP) definitional frameworks apply to individuals with decision-making capacity. We aimed to conceptualize ACP for dementia in terms of its definition and issues that deserve particular attention. Delphi study with phases: (A) adaptation of a generic ACP framework by a task force of the European Association for Palliative Care (EAPC); (B) four online surveys by 107 experts from 33 countries, September 2021 to June 2022; (C) approval by the EAPC board. ACP in dementia was defined as a communication process adapted to the person's capacity, which includes, and is continued with, family if available. We identified pragmatic boundaries regarding participation and time (i.e., current or end-of-life care). Three interrelated issues that deserve particular attention were capacity, family, and engagement and communication. A communication and relationship-centered definitional framework of ACP in dementia evolved through international consensus supporting inclusiveness of persons with dementia and their family. This article offers a consensus definitional framework of advance care planning in dementia. The definition covers all stages of capacity and includes family caregivers. Particularly important are (1) capacity, (2) family, (3) engagement, and communication. Fluctuating capacity was visualized in relation to roles and engaging stakeholders

    Defining the genomic signature of the parous breast.

    Get PDF
    ABSTRACT: BACKGROUND: It is accepted that a woman's lifetime risk of developing breast cancer after menopause is reduced by early full term pregnancy and multiparity. This phenomenon is thought to be associated with the development and differentiation of the breast during pregnancy. METHODS: In order to understand the underlying molecular mechanisms of pregnancy induced breast cancer protection, we profiled and compared the transcriptomes of normal breast tissue biopsies from 71 parous (P) and 42 nulliparous (NP) healthy postmenopausal women using Affymetrix Human Genome U133 Plus 2.0 arrays. To validate the results, we performed real time PCR and immunohistochemistry. RESULTS: We identified 305 differentially expressed probesets (208 distinct genes). Of these, 267 probesets were up- and 38 down-regulated in parous breast samples; bioinformatics analysis using gene ontology enrichment revealed that up-regulated genes in the parous breast represented biological processes involving differentiation and development, anchoring of epithelial cells to the basement membrane, hemidesmosome and cell-substrate junction assembly, mRNA and RNA metabolic processes and RNA splicing machinery. The down-regulated genes represented biological processes that comprised cell proliferation, regulation of IGF-like growth factor receptor signaling, somatic stem cell maintenance, muscle cell differentiation and apoptosis. CONCLUSIONS: This study suggests that the differentiation of the breast imprints a genomic signature that is centered in the mRNA processing reactome. These findings indicate that pregnancy may induce a safeguard mechanism at post-transcriptional level that maintains the fidelity of the transcriptional process
    corecore