138 research outputs found

    Comprehensive SNP array study of frequently used neuroblastoma cell lines; copy neutral loss of heterozygosity is common in the cell lines but uncommon in primary tumors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Copy neutral loss of heterozygosity (CN-LOH) refers to a special case of LOH occurring without any resulting loss in copy number. These alterations is sometimes seen in tumors as a way to inactivate a tumor suppressor gene and have been found to be important in several types of cancer.</p> <p>Results</p> <p>We have used high density single nucleotide polymorphism arrays in order to investigate the frequency and distribution of CN-LOH and other allelic imbalances in neuroblastoma (NB) tumors and cell lines. Our results show that the frequency of these near-CN-LOH events is significantly higher in the cell lines compared to the primary tumors and that the types of CN-LOH differ between the groups. We also show that the low-risk neuroblastomas that are generally considered to have a "triploid karyotype" often present with a complex numerical karyotype (no segmental changes) with 2-5 copies of each chromosome. Furthermore a comparison has been made between the three related cell lines SK-N-SH, SH-EP and SH-SY5Y with respect to overall genetic aberrations, and several aberrations unique to each of the cell lines has been found.</p> <p>Conclusions</p> <p>We have shown that the NB tumors analyzed contain several interesting allelic imbalances that would either go unnoticed or be misinterpreted using other genome-wide techniques. These findings indicate that the genetics underlying NB might be even more complex than previously known and that SNP arrays are important analysis tools. We have also showed that these near-CN-LOH events are more frequently seen in NB cell lines compared to NB tumors and that a set of highly related cell lines have continued to evolve secondary to the subcloning event. Taken together our analysis highlights that cell lines in many cases differ substantially from the primary tumors they are thought to represent, and that caution should be taken when drawing conclusions from cell line-based studies.</p

    The role of formyl peptide receptor 1 (FPR1) in neuroblastoma tumorigenesis

    Get PDF
    Published version. Source at http://dx.doi.org/10.1186/s12885-016-2545-1 Background: Formyl peptide receptor 1 (FPR1) is a G protein-coupled receptor mainly expressed by the cells of myeloid origin, where it mediates the innate immune response to bacterial formylated peptides. High expression of FPR1 has been detected in various cancers but the function of FPR1 in tumorigenesis is poorly understood. Methods: Expression of FPR1 in neuroblastoma cell lines and primary tumors was studied using RT-PCR, western blotting, immunofluorescence and immunohistochemistry. Calcium mobilization assays and western blots with phospho-specific antibodies were used to assess the functional activity of FPR1 in neuroblastoma. The tumorigenic capacity of FPR1 was assessed by xenografting of neuroblastoma cells expressing inducible FPR1 shRNA, FPR1 cDNA or control shRNA in nude mice. Results: FPR1 is expressed in neuroblastoma primary tumors and cell lines. High expression of FPR1 corresponds with high-risk disease and poor patient survival. Stimulation of FPR1 in neuroblastoma cells using fMLP, a selective FPR1 agonist, induced intracellular calcium mobilization and activation of MAPK/Erk, PI3K/Akt and P38-MAPK signal transduction pathways that were inhibited by using Cyclosporin H, a selective receptor antagonist for FPR1. shRNA knock-down of FPR1 in neuroblastoma cells conferred a delayed xenograft tumor development in nude mice, whereas an ectopic overexpression of FPR1 promoted augmented tumorigenesis in nude mice. Conclusion: Our data demonstrate that FPR1 is involved in neuroblastoma development and could represent a therapy option for the treatment of neuroblastoma

    High-resolution array copy number analyses for detection of deletion, gain, amplification and copy-neutral LOH in primary neuroblastoma tumors; Four cases of homozygous deletions of the CDKN2A gene

    Get PDF
    BACKGROUND: Neuroblastoma is a very heterogeneous pediatric tumor of the sympathetic nervous system showing clinically significant patterns of genetic alterations. Favorable tumors usually have near-triploid karyotypes with few structural rearrangements. Aggressive stage 4 tumors often have near-diploid or near-tetraploid karyotypes and structural rearrangements. Whole genome approaches for analysis of genome-wide copy number have been used to analyze chromosomal abnormalities in tumor samples. We have used array-based copy number analysis using oligonucleotide single nucleotide polymorphisms (SNP) arrays to analyze the chromosomal structure of a large number of neuroblastoma tumors of different clinical and biological subsets. RESULTS: Ninety-two neuroblastoma tumors were analyzed with 50 K and/or 250 K SNP arrays from Affymetrix, using CNAG3.0 software. Thirty percent of the tumors harbored 1p deletion, 22% deletion of 11q, 26% had MYCN amplification and 45% 17q gain. Most of the tumors with 1p deletion were found among those with MYCN amplification. Loss of 11q was most commonly seen in tumors without MYCN amplification. In the case of MYCN amplification, two types were identified. One type displayed simple continuous amplicons; the other type harbored more complex rearrangements. MYCN was the only common gene in all cases with amplification. Complex amplification on chromosome 12 was detected in two tumors and three different overlapping regions of amplification were identified. Two regions with homozygous deletions, four cases with CDKN2A deletions in 9p and one case with deletion on 3p (the gene RBMS3) were also detected in the tumors. CONCLUSION: SNP arrays provide useful tools for high-resolution characterization of significant chromosomal rearrangements in neuroblastoma tumors. The mapping arrays from Affymetrix provide both copy number and allele-specific information at a resolution of 10–12 kb. Chromosome 9p, especially the gene CDKN2A, is subject to homozygous (four cases) and heterozygous deletions (five cases) in neuroblastoma tumors

    Omega-3 fatty acids decrease CRYAB, production of oncogenic prostaglandin E-2 and suppress tumor growth in medulloblastoma

    Get PDF
    Aims: Medulloblastoma (MB) is one of the most common malignant central nervous system tumors of childhood. Despite intensive treatments that often leads to severe neurological sequelae, the risk for resistant relapses remains significant. In this study we have evaluated the effects of the omega 3-long chain polyunsaturated fatty acids (omega 3-LCPUFA) docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) on MB cell lines and in a MB xenograft model.Main methods: Effects of omega 3-LCPUFA treatment of MB cells were assessed using the following: WST-1 assay, cell death probes, clonogenic assay, ELISA and western blot. MB cells were implanted into nude mice and the mice were randomized to DHA, or a combination of DHA and EPA treatment, or to control group. Treatment effects in tumor tissues were evaluated with: LC-MS/MS, RNA-sequencing and immunohistochemistry, and tumors, erythrocytes and brain tissues were analyzed with gas chromatography.Key findings: omega 3-LCPUFA decreased prostaglandin E2 (PGE(2)) secretion from MB cells, and impaired MB cell viability and colony forming ability and increased apoptosis in a dose-dependent manner. DHA reduced tumor growth in vivo, and both PGE(2) and prostacyclin were significantly decreased in tumor tissue from treated mice compared to control animals. All omega 3-LCPUFA and dihomo-gamma-linolenic acid increased in tumors from treated mice. RNA-sequencing revealed 10 downregulated genes in common among omega 3-LCPUFA treated tumors. CRYAB was the most significantly altered gene and the downregulation was confirmed by immunohistochemistry.Significance: Our findings suggest that addition of DHA and EPA to the standard MB treatment regimen might be a novel approach to target inflammation in the tumor microenvironment

    ERBB3 is a marker of a ganglioneuroblastoma/ganglioneuroma-like expression profile in neuroblastic tumours

    Get PDF
    Background: Neuroblastoma (NB) tumours are commonly divided into three cytogenetic subgroups. However, by unsupervised principal components analysis of gene expression profiles we recently identified four distinct subgroups, r1-r4. In the current study we characterized these different subgroups in more detail, with a specific focus on the fourth divergent tumour subgroup (r4). Methods: Expression microarray data from four international studies corresponding to 148 neuroblastic tumour cases were subject to division into four expression subgroups using a previously described 6-gene signature. Differentially expressed genes between groups were identified using Significance Analysis of Microarray (SAM). Next, gene expression network modelling was performed to map signalling pathways and cellular processes representing each subgroup. Findings were validated at the protein level by immunohistochemistry and immunoblot analyses. Results: We identified several significantly up-regulated genes in the r4 subgroup of which the tyrosine kinase receptor ERBB3 was most prominent (fold change: 132–240). By gene set enrichment analysis (GSEA) the constructed gene network of ERBB3 (n = 38 network partners) was significantly enriched in the r4 subgroup in all four independent data sets. ERBB3 was also positively correlated to the ErbB family members EGFR and ERBB2 in all data sets, and a concurrent overexpression was seen in the r4 subgroup. Further studies of histopathology categories using a fifth data set of 110 neuroblastic tumours, showed a striking similarity between the expression profile of r4 to ganglioneuroblastoma (GNB) and ganglioneuroma (GN) tumours. In contrast, the NB histopathological subtype was dominated by mitotic regulating genes, characterizing unfavourable NB subgroups in particular. The high ErbB3 expression in GN tumour types was verified at the protein level, and showed mainly expression in the mature ganglion cells. Conclusions: Conclusively, this study demonstrates the importance of performing unsupervised clustering and subtype discovery of data sets prior to analyses to avoid a mixture of tumour subtypes, which may otherwise give distorted results and lead to incorrect conclusions. The current study identifies ERBB3 as a clear-cut marker of a GNB/GN-like expression profile, and we suggest a 7-gene expression signature (including ERBB3) as a complement to histopathology analysis of neuroblastic tumours. Further studies of ErbB3 and other ErbB family members and their role in neuroblastic differentiation and pathogenesis are warranted

    A Phase II Trial of a Personalized, Dose-Intense Administration Schedule of (177)Lutetium-DOTATATE in Children With Primary Refractory or Relapsed High-Risk Neuroblastoma-LuDO-N

    Get PDF
    Background:& nbsp;Half the children with high-risk neuroblastoma die with widespread metastases. Molecular radiotherapy is an attractive systemic treatment for this relatively radiosensitive tumor. I-131-mIBG is the most widely used form in current use, but is not universally effective. Clinical trials of (177)Lutetium DOTATATE have so far had disappointing results, possibly because the administered activity was too low, and the courses were spread over too long a period of time, for a rapidly proliferating tumor. We have devised an alternative administration schedule to overcome these limitations. This involves two high-activity administrations of single agent Lu-177-DOTATATE given 2 weeks apart, prescribed as a personalized whole body radiation absorbed dose, rather than a fixed administered activity. "A phase II trial of (177)Lutetium-DOTATATE in children with primary refractory or relapsed high-risk neuroblastoma - LuDO-N " (EudraCT No: 2020-004445-36, Identifier: NCT04903899) evaluates this new dosing schedule.& nbsp;Methods:& nbsp;The LuDO-N trial is a phase II, open label, multi-center, single arm, two stage design clinical trial. Children aged 18 months to 18 years are eligible. The trial is conducted by the Nordic Society for Pediatric Hematology and Oncology (NOPHO) and it has been endorsed by SIOPEN (). The Karolinska University Hospital, is the sponsor of the LuDO-N trial, which is conducted in collaboration with Advanced Accelerator Applications, a Novartis company. All Scandinavian countries, Lithuania and the Netherlands participate in the trial and the UK has voiced an interest in joining in 2022.& nbsp;Results:& nbsp;The pediatric use of the Investigational Medicinal Product (IMP) Lu-177-DOTATATE, as well as non-IMPs SomaKit TOC (R) (Ga-68-DOTATOC) and LysaKare (R) amino acid solution for renal protection, have been approved for pediatric use, within the LuDO-N Trial by the European Medicines Agency (EMA). The trial is currently recruiting. Recruitment is estimated to be finalized within 3-5 years.& nbsp;Discussion:& nbsp;In this paper we present the protocol of the LuDO-N Trial. The rationale and design of the trial are discussed in relation to other ongoing, or planned trials with similar objectives. Further, we discuss the rapid development of targeted radiopharmaceutical therapy and the future perspectives for developing novel therapies for high-risk neuroblastoma and other pediatric solid tumors.Peer reviewe

    Rho-associated kinase is a therapeutic target in neuroblastoma

    Get PDF
    Source at: http://doi.org/10.1073/pnas.1706011114 Neuroblastoma is a peripheral neural system tumor that originates from the neural crest and is the most common and deadly tumor of infancy. Here we show that neuroblastoma harbors frequent mutations of genes controlling the Rac/Rho signaling cascade important for proper migration and differentiation of neural crest cells during neuritogenesis. RhoA is activated in tumors from neuroblastoma patients, and elevated expression of Rho-associated kinase (ROCK)2 is associated with poor patient survival. Pharmacological or genetic inhibition of ROCK1 and 2, key molecules in Rho signaling, resulted in neuroblastoma cell differentiation and inhibition of neuroblastoma cell growth, migration, and invasion. Molecularly, ROCK inhibition induced glycogen synthase kinase 3β-dependent phosphorylation and degradation of MYCN protein. Small-molecule inhibition of ROCK suppressed MYCN-driven neuroblastoma growth in TH-MYCN homozygous transgenic mice and MYCN gene-amplified neuroblastoma xenograft growth in nude mice. Interference with Rho/Rac signaling might offer therapeutic perspectives for high-risk neuroblastoma

    Multifocal Neuroblastoma and Central Hypoventilation in An Infant with Germline ALK F1174I Mutation

    Get PDF
    Funding Information: This work has been supported by grants from the Swedish Cancer Society (TM 15-794; TM 20-1213; PK 19-566), the Swedish Childhood Cancer Foundation (TM 16-147; TM 17-166; TM 19-139; PK 17-122; SF 15-61, 18-99; DT 12-002, NC12-0026), the Swedish Research Council (TM 521-2014-3031), the Swedish state under the LUA/ALF agreement (TM ALFGBG-447171) and the Swedish Foundation for Strategic Research (TM/PK RB13-0204, www.nnbcr.se). SF was the recipient of a Research Assistant Fellowship (14-64), by the Swedish Childhood Cancer Foundation. Publisher Copyright: © 2022 by the authors.A preterm infant with central hypoventilation was diagnosed with multifocal neuroblastoma. Congenital anomalies of the autonomic nervous system in association with neuroblastoma are commonly associated with germline mutations in PHOX2B. Further, the ALK gene is frequently mutated in both familial and sporadic neuroblastoma. Sanger sequencing of ALK and PHOX2B, SNP microarray of three tumor samples and whole genome sequencing of tumor and blood were performed. Genetic testing revealed a germline ALK F1174I mutation that was present in all tumor samples as well as in normal tissue samples from the patient. Neither of the patient’s parents presented the ALK variant. Array profiling of the three tumor samples showed that two of them had only numerical aberrations, whereas one sample displayed segmental alterations, including a gain at chromosome 2p, resulting in two copies of the ALK-mutated allele. Whole genome sequencing confirmed the presence of the ALK variant and did not detect any aberrations in the coding or promotor region of PHOX2B. This study is to our knowledge the first to report a de novo ALK F1174I germline mutation. This may not only predispose to congenital multifocal neuroblastoma but may also contribute to the respiratory dysfunction seen in this patient.Peer reviewe

    11q deletion or ALK activity curbs DLG2 expression to maintain an undifferentiated state in neuroblastoma

    Get PDF
    High-risk neuroblastomas typically display an undifferentiated or poorly differentiated morphology. It is therefore vital to understand molecular mechanisms that block the differentiation process. We identify an important role for oncogenic ALK-ERK1/2-SP1 signaling in the maintenance of undifferentiated neural crest-derived progenitors through the repression of DLG2, a candidate tumor suppressor gene in neuroblastoma. DLG2 is expressed in the murine "bridge signature'' that represents the transcriptional transition state when neural crest cells or Schwann cell precursors differentiate to chromaffin cells of the adrenal gland. We show that the restoration of DLG2 expression spontaneously drives neuroblastoma cell differentiation, high-lighting the importance of DLG2 in this process. These findings are supported by genetic analyses of high-risk 11q deletion neuroblastomas, which identified genetic lesions in the DLG2 gene. Our data also suggest that further exploration of other bridge genes may help elucidate the mechanisms underlying the differentiation of NC-derived progenitors and their contribution to neuroblastomas

    The multiple functions of miR-574-5p in the neuroblastoma tumor microenvironment

    Get PDF
    Neuroblastoma is the most common extracranial solid tumor in childhood and arises from neural crest cells of the developing sympathetic nervous system. Prostaglandin E2 (PGE2) has been identified as a key pro-inflammatory mediator of the tumor microenvironment (TME) that promotes neuroblastoma progression. We report that the interaction between the microRNA miR-574-5p and CUG-binding protein 1 (CUGBP1) induces the expression of microsomal prostaglandin E2 synthase 1 (mPGES-1) in neuroblastoma cells, which contributes to PGE2 biosynthesis. PGE2 in turn specifically induces the sorting of miR-574-5p into small extracellular vesicles (sEV) in neuroblastoma cell lines. sEV are one of the major players in intercellular communication in the TME. We found that sEV-derived miR-574-5p has a paracrine function in neuroblastoma. It acts as a direct Toll-like receptor 7/8 (TLR7/8) ligand and induces α-smooth muscle actin (α-SMA) expression in fibroblasts, contributing to fibroblast differentiation. This is particularly noteworthy as it has an opposite function to that in the TME of lung carcinoma, another PGE2 dependent tumor type. Here, sEV-derived miR-574-5p has an autokrine function that inhibits PGE2 biosynthesis in lung cancer cells. We report that the tetraspanin composition on the surface of sEV is associated with the function of sEV-derived miR-574-5p. This suggests that the vesicles do not only transport miRs, but also appear to influence their mode of action
    corecore