672 research outputs found

    Quantifying how landscape composition and configuration affect urban land surface temperatures using machine learning and neutral landscapes

    Get PDF
    \ua9 2019. The urban heat island effect is an important 21st century issue because it intersects with the complex challenges of urban population growth, global climate change, public health and increasing energy demand for cooling. While the effects of urban landscape composition on land surface temperature (LST) are well-studied, less attention has been paid to the spatial arrangement of land cover types especially in smaller, often more diverse cities. Landscape configuration is important because it offers the potential to provide refuge from excessive heat for both people and buildings. We present a novel approach to quantifying how both composition and configuration affect LST derived from Landsat imagery in Southampton, UK. First, we trained a machine-learning (generalized boosted regression) model to predict LST from landscape covariates that included the characteristics of the immediate pixel and its surroundings. The model achieved a correlation between predicted and measured LST of 0.956 on independent test data (n = 102,935) and included predictors for both the immediate and adjacent land use. In contrast to other studies, we found adjacency effects to be stronger than immediate effects at 30 m resolution. Next, we used a landscape generation tool (Landscape Generator) to alter landscape configuration by varying natural and built patch sizes and arrangements while holding composition constant. The generated neutral landscapes were then fed into the machine learning model to predict patterns of LST. When we manipulated landscape configuration, the average city temperature remained the same but the local minima varied by 0.9 \ub0C and the maxima by 4.2 \ub0C. The effects on LST and heat island metrics correlated with landscape fragmentation indices. Moreover, the surface temperature of buildings could be reduced by up to 2.1 \ub0C through landscape manipulation. We found that the optimum mix of land use types is neither at the land-sharing nor land-sparing extremes, but a balance between the two. In our city, maximum cooling was achieved when ~60% of land was left natural and distributed in 7–8 patches km−2 although this could be location dependent and further work is needed. Opportunities for urban cooling should be required in the planning process and must consider both composition and configuration at the landscape scale if cities are to build capacity for a growing population and climate change

    Spatial variation in sound frequency components across an urban area derived from mobile surveys

    Get PDF
    \ua9 2019 The Author(s). Continuous exposure to noise can lead to premature hearing loss, reduced cognitive performance, insomnia, stress, hypertension, cardiovascular diseases and stroke. Road noise affects the health of >125 million people in the European Union and Member States are required to map major noise hotspots. These strategic noise maps are usually derived from traffic counts and propagation models because large- scale measurement of the acoustic environment using conventional methods is infeasible. In this study, the authors surveyed the entire city of Southampton, UK using a mobile survey technique, capturing spatial variations in street- level sound characteristics across multiple frequencies from all sound sources. Over 52,000 calibrated and georeferenced sound clips covering 11 Hz to 22.7 kHz are analysed here to investigate variations in sound frequency composition across urban space and then applied to two issues: the definition of naturalness in the acoustic environment; and perceptions of social inequity in sound exposure. Clusters of acoustic characteristics were identified and mapped using spectral clustering and principal components analysis based on octave bands, ecoacoustic indices and dBA. We found independent patterns in low, mid and high frequencies, and the ecoacoustic indices that related to land use. Ecoacoustic indices partially mapped onto greenspace, identifying naturalness, but not uniquely, probably because urban anthropogenic sounds occur at higher frequencies than in the natural areas where such indices were developed. There was some evidence of inequity in sound exposure according to social deprivation and ethnicity, and results differed according to frequency bands. The consequences of these findings and the benefits of city-wide sound surveys for urban planning are discussed

    Tracking a city’s center of gravity over 500 years of growth from a time series of georectified historical maps

    Get PDF
    \ua9 2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. It is surprising difficult to define where a city center lies, yet its location has a profound effect on a city’s structure and function. We examine whether city center typicality points can be consistently located on historical maps such that their centroid identifies a meaningful central location over a 500-year period in Southampton, UK. We compare movements of this city center centroid against changes in the geographical center of the city as defined by its boundary. Southampton’s historical maps were georectified with a mean accuracy of 21 m (range 9.9 to 47 m), and 18 to 102 typicality points were identified per map, enough to chart changes in the city center centroid through time. Over nearly 500 years, Southampton’s center has moved just 343 m, often corresponding with the key retail attractants of the time, while its population has increased 80-fold, its administrative area 60-fold and its geographical center moved 1985 m. This inertia to change in the city center presents environmental challenges for the present-day, made worse by the geography of Southampton, bounded by the sea, rivers and major roads. Geographical context, coupled with planning decisions in the past that maintain a city center in its historical location, place limits on the current sustainability of a city

    Capturing the spatial and temporal variability of urban noise: do low-cost sensors offer a step towards higher resolution noise monitoring?

    Get PDF
    Populations are being exposed to environmental noise at levels that impact on both mental and physical health, with knock-on effects on productivity and economic performance. Current assessments of exposure are often based on noise levels at building fa\ue7ades, derived from sound propagation models and are usually limited to long-term average noise levels for periods of the day, night or over 24 hours (e.g. Lden). There is a particular lack of information on variations in noise throughout the diurnal cycle and over long time periods. In this study, we deployed 14 low-cost recorders to gather high resolution data on urban noise levels and compared results with those from a conventional noise propagation algorithm. Daily LAeq and diurnal variations in hourly LAeq showed considerable variation in space and time with the middle of the day generally noisiest. Some of these patterns were well captured by the propagation model although it tended to underestimate noise levels from all sources. Although more work is needed, we suggest that well-placed sensors have the potential to enhance exposure assessments e.g. on minor roads and where traffic is not the major noise source

    The role of forest structure and composition in driving the distribution of bats in Mediterranean regions

    Get PDF
    This is the final version. Available from Nature Research via the DOI in this record. Data availability: Bat location records are available as Supplementary data 1. Forest and environmental data are publicly available to download (https://www.miteco.gob.es/es/biodiversidad/servicios/banco-datos-naturaleza/informacion-dispo nible/ifn3.aspx)Forests are key native habitats in temperate environments. While their structure and composition contribute to shaping local-scale community assembly, their role in driving larger-scale species distributions is understudied. We used detailed forest inventory data, an extensive dataset of occurrence records, and species distribution models integrated with a functional approach, to disentangle mechanistically how species-forest dependency processes drive the regional-scale distributions of nine forest specialist bats in a Mediterranean region in the south of Spain. The regional distribution patterns of forest bats were driven primarily by forest composition and structure rather than by climate. Bat roosting ecology was a key trait explaining the strength of the bat-forest dependency relationships. Tree roosting bats were strongly associated with mature and heterogeneous forest with large trees (diameters > 425 mm). Conversely, and contrary to what local-scale studies show, our results did not support that flight-related traits (wing loading and aspect ratio) drive species distributional patterns. Mediterranean forests are expected to be severely impacted by climate change. This study highlights the utility of disentangling species-environment relationships mechanistically and stresses the need to account for species-forest dependency relationships when assessing the vulnerability of forest specialists towards climate change.Natural Environment Research Council (NERC

    Outcome of ATP-based tumor chemosensitivity assay directed chemotherapy in heavily pre-treated recurrent ovarian carcinoma

    Get PDF
    BACKGROUND: We wished to evaluate the clinical response following ATP-Tumor Chemosensitivity Assay (ATP-TCA) directed salvage chemotherapy in a series of UK patients with advanced ovarian cancer. The results are compared with that of a similar assay used in a different country in terms of evaluability and clinical endpoints. METHODS: From November 1998 to November 2001, 46 patients with pre-treated, advanced ovarian cancer were given a total of 56 courses of chemotherapy based on in-vitro ATP-TCA responses obtained from fresh tumor samples or ascites. Forty-four patients were evaluable for results. Of these, 18 patients had clinically platinum resistant disease (relapse < 6 months after first course of chemotherapy). There was evidence of cisplatin resistance in 31 patients from their first ATP-TCA. Response to treatment was assessed by radiology, clinical assessment and tumor marker level (CA 125). RESULTS: The overall response rate was 59% (33/56) per course of chemotherapy, including 12 complete responses, 21 partial responses, 6 with stable disease, and 15 with progressive disease. Two patients were not evaluable for response having received just one cycle of chemotherapy: if these were excluded the response rate is 61%. Fifteen patients are still alive. Median progression free survival (PFS) was 6.6 months per course of chemotherapy; median overall survival (OAS) for each patient following the start of TCA-directed therapy was 10.4 months (95% confidence interval 7.9-12.8 months). CONCLUSION: The results show similar response rates to previous studies using ATP-TCA directed therapy in recurrent ovarian cancer. The assay shows high evaluability and this study adds weight to the reproducibility of results from different centre

    Intrinsic activity in the fly brain gates visual information during behavioral choices

    Get PDF
    The small insect brain is often described as an input/output system that executes reflex-like behaviors. It can also initiate neural activity and behaviors intrinsically, seen as spontaneous behaviors, different arousal states and sleep. However, less is known about how intrinsic activity in neural circuits affects sensory information processing in the insect brain and variability in behavior. Here, by simultaneously monitoring Drosophila's behavioral choices and brain activity in a flight simulator system, we identify intrinsic activity that is associated with the act of selecting between visual stimuli. We recorded neural output (multiunit action potentials and local field potentials) in the left and right optic lobes of a tethered flying Drosophila, while its attempts to follow visual motion (yaw torque) were measured by a torque meter. We show that when facing competing motion stimuli on its left and right, Drosophila typically generate large torque responses that flip from side to side. The delayed onset (0.1-1 s) and spontaneous switch-like dynamics of these responses, and the fact that the flies sometimes oppose the stimuli by flying straight, make this behavior different from the classic steering reflexes. Drosophila, thus, seem to choose one stimulus at a time and attempt to rotate toward its direction. With this behavior, the neural output of the optic lobes alternates; being augmented on the side chosen for body rotation and suppressed on the opposite side, even though the visual input to the fly eyes stays the same. Thus, the flow of information from the fly eyes is gated intrinsically. Such modulation can be noise-induced or intentional; with one possibility being that the fly brain highlights chosen information while ignoring the irrelevant, similar to what we know to occur in higher animals
    corecore