
Introduction
Noise pollution is a serious environmental stressor affect-
ing human health, second only to ultra-fine particulate 
matter (PM2.5) in its impact (WHO 2011). Noise may be 
defined as unwanted and unwelcome sound which causes 
nuisance and irritability, or more simply as sound out of 
place (Murphy and King 2014, Beutel et al. 2016, DEFRA 
2016). About 75% of Europe’s population lives in urban 
areas and with increasing urbanisation, population density 
and associated daily human activity, urban environments 
are becoming noisier and complaints against environmen-
tal noise are increasing (EEA, 2014a). Approximately 20% 

of the European population is exposed to unacceptable 
noise levels (WHO 2011, EEA 2014a). Road traffic is the 
main cause of noise pollution in urban settings (Sørensen 
et al. 2012, EEA 2014a, Brown 2015, Margaritis and Kang 
2017) followed by rail and air traffic and industry (EEA 
2014a). Beyond Europe the situation may be even worse 
since in those countries noise pollution is not always 
considered an environmental problem (Murphy and King 
2014).

Although people are generally quite resilient to noise 
exposure, the level of adaptation (which is never totally 
complete) differs substantially from individual to individ-
ual (Sørensen et al. 2012). Long term exposure can lead to 
annoyance, stress, sleep disturbance and daytime sleepi-
ness, affect cognitive performance in schoolchildren, and 
the performance of staff and patient outcomes in hospi-
tals (Ramirez et al. 2004, EEA 2014b, Kraus et al. 2015, 
Leighton 2016). Apart from causing hearing loss and 
tinnitus, exposure to noise is also linked to the occurrence 
of hypertension and an increased risk of heart attack, 
stroke, ischemia and other cardiovascular diseases (Beutel 
et al. 2016, Fecht et al. 2016, Wang et al. 2016).

Noise pollution is characteristically a spatial and tem-
poral phenomenon, largely shaped by urban form and 
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land-use. Considering the elements of urban form in 
the assessment of urban noise is undoubtedly impor-
tant for understanding exposure to noise at the street 
scale (McAlexander et al. 2015, Hong and Jeon 2017). It is 
widely accepted that the mapping and modelling of noise 
and sound across space is crucial for visualising and quan-
tifying potential impacts in urban environments (Tang 
and Wang 2007, EEA 2014a, Murphy and King 2014, Torija 
et al. 2014). Yet, despite all the evidence and the ability 
to measure it precisely, the amount of averaged energy 
or peak levels of noise pollution that people are exposed 
to in cities has been neglected (Basner et al. 2014). Even 
less is known about the spatial pattern of the various 
sound frequency bands that make up the acoustic envi-
ronment in urban areas. Indeed, very few large-scale sur-
veys have been carried out to capture urban sounds and 
noise from all sources at street level in a spatially-explicit 
manner, most noise maps being based on traffic data and 
sound propagation modelling (Can et al. 2014). Assessing 
the acoustic environment of an entire city is important 
because the city is often the management and governance 
unit within which planning decisions are made. If plan-
ners knew the entire landscape they were managing, more 
informed decisions could be made. However, traditional 
large-scale acoustic surveys and soundscape assessments 
are complex, expensive and time-consuming to mount 
(Kogan et al. 2017, Votsi et al. 2017). Most involve meas-
urement at a small scale (Maria Aiello et al. 2016) at either 
fixed locations or at stops along soundwalks (Jeon et al. 
2013) where sound (or noise levels) and peoples’ reac-
tions are recorded for at least five minutes per location 
(Hong and Jeon 2017, Kogan et al. 2017). In this paper, the 
authors present a different approach, using mobile acous-
tic surveys (Can et al. 2014) made by walking observers. 
Using this rapid survey approach, we were able to record 

~52,000 sound clips across an entire city (~52 km2) and 
report here the findings from a data mining analysis of the 
spatial patterning in sound pressure levels according to 
frequency bands and band combinations. To illustrate the 
value of a city-wide sound survey, we consider two applica-
tions: one related to biodiversity conservation and human 
well-being; and the second to studies of environmental 
social equity.

Concern about the negative health and well-being con-
sequences of noise has led many authors to ask where 
its impacts are least felt (Votsi et al. 2017), and this is 
especially relevant to urban greenspace (Taylor and 
Hochuli 2017) as a key provider of ecosystem services 
(Haase et al. 2014, Andersson-Sköld et al. 2018). There 
is also growing recognition that acoustic environments 
that are good for humans may also benefit urban bio-
diversity (Francis et al. 2017, Hedblom et al. 2017). The 
linking concept is “naturalness”, recognised as a desirable 
but elusive property in biodiversity conservation since 
the 1970s (Anderson 1991) and now applied in studies 
of well-being (Knez et al. 2018). Methods to characterize 
naturalness in the acoustic environment have come from 
soundscape ecology (Pijanowski et al. 2011, Sueur et al. 
2014) although they have been developed mainly for nat-
ural areas (Fairbrass et al. 2017). Frequency bands have 

been divided into the characteristic sounds of the biotic 
world, human sources and the physical environment, 
known as biophony, anthropophony and geophony 
respectively (Joo et al. 2011, Sueur et al. 2014, Eldridge 
et al. 2016, Hong and Jeon 2017). There remains doubt, 
however, whether this classification is fully applicable to 
urban areas because of the potentially different spectral 
composition present (Devos 2016, Fairbrass et al. 2017). 
If ecoacoustic indices could be applied in urban areas, 
they could offer a useful way to characterize the spatial 
pattern in naturalness within cities (but also see Kogan 
et al. 2018).

One of the potential consequences arising from spatial 
pattern in the acoustic environment is social inequity in 
exposure (Havard et al. 2011, EEA 2014a, Casey et al. 2017, 
Leijssen et al. 2019). This applies not only to noise but also 
differential exposure to the various frequency compo-
nents. There is often a general presumption that socially 
disadvantaged groups are more exposed to environmen-
tal stressors including noise (Mueller et al. 2018, von 
Szombathely et al. 2018) although this view has not been 
supported in some studies (Havard et al. 2011, Leijssen 
et  al. 2019). Again, such questions are challenging to 
address at the whole-city scale and most studies have 
focused only on road traffic noise (Tonne et al. 2018) 
rather than sounds from all sources at street level. Using 
the data gathered from our rapid survey approach, we 
consider whether perceptions of inequity depend on the 
sound frequency bands being studied and not only the 
usual A-weighted noise levels (dBA).

The research questions specifically addressed in this 
paper at the whole city scale are therefore:

1.	� How does sound frequency composition differ 
across urban space?

2.	� How useful are ecoacoustic indices at characteris-
ing naturalness across the city?

3.	� Do perceptions of social inequity to sound 
exposure differ according to the frequency bands 
considered?

Methods
Data collection and pre-processing
Sound data were collected in the city of Southampton 
on the south coast of the UK and covered the whole area 
(51.8 km2) within the administrative boundaries of the 
City Council. Much of Southampton lies on a peninsula 
formed by the Itchen and Test rivers which funnel traf-
fic towards the city centre and the busy freight and pas-
senger terminals at the port. The city’s traffic congestion 
causes air pollution and noise problems yet is contrasted 
by many quieter areas of greenspace amounting to c.11.0 
km2. This varied urban form might be expected to lead to 
a similarly varied acoustic environment.

Using a spatially-stratified sampling scheme based on 
land characteristics (see details below), continuous sound 
recordings were made by walking surveyors within the 
period 14 July to 25 August 2016 during the morning 
rush hour (7:00–9:00), afternoon (13:00–15:00) and even-
ing rush hour (16:30–18:30). It was not practicable to 
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define precisely the routes taken by surveyors due to road 
closures, traffic and other constraints beyond our control. 
Instead, start and finish points were defined and surveyors 
were asked to walk through as many land cover types as 
possible along their route. The data for all time periods 
have been merged for the analyses in this paper and tem-
poral differences are not considered further.

Recordings were made using Fostex FR–2LE and 
TASCAM DR–40 recorders, with PCB sensor signal condi-
tioners and microphones. Equipment was carried inside 
rucksacks, with the microphone mounted above the 
shoulders at a height of 1.65–1.70 m from the ground. To 
minimise impact on recordings, surveyors wore soft-soled 
shoes, soft clothes, no jangling accessories such as neck-
laces, and walked at a constant pace. Surveys were not car-
ried out during windy and rainy days, although variations 
in wind during surveys were inevitable. The location of the 
walking observer was logged every ten seconds as a track 
using a Garmin Oregon 400t GPS unit.

The recording sampling rate used was 96 kHz to ensure 
coverage of the ultrasonic range, theoretically to 48 kHz 
but limited to 22.7 kHz here due to microphone sensi-
tivity. Microphones were calibrated using a Brüel & Kær 
sound level calibrator type 4230 emitting 94 dB at 1000 
Hz, at the beginning or end of survey days. Both low and 
high frequency components showed some difference 
between equipment sets and therefore an empirical cali-
bration was additionally used with corrections of around 1 
dB below 44 Hz and 2 dB above 5.7 kHz. Sound clips were 
saved as uncompressed wav files. Custom-written routines 
in Matlab used Fast Fourier Transforms to calculate the 
sound pressure levels (SPL) in octave bands (Table 1) for 
non-overlapping 10-second clips from each sound record-
ing, centred on the timestamp of each stored GPS coordi-
nate. SPLs were then used to calculate dBA (A-weighted 
decibel levels) through the logarithmic addition of the 
factors in Table 1.

Ecoacoustic indices
Many ecoacoustic indices have been proposed (Joo et al. 
2011, Sueur et al. 2014, Eldridge et al. 2016, Villanueva-
Rivera and Pijanowski 2016) based on weighted combi-
nations of SPL in frequency bands. However, most use 
narrow bands of 1 kHz in contrast to the octaves used 
here. Biophony is often defined as sounds between 2 and 
8 kHz, and anthropophony as sounds between 1 kHz to 
2 kHz (e.g. Gage & Napoletano, 2001). The nearest equiv-
alent for biophony calculated from octaves would be 
bands 9 and 10 (i.e. 2.8 to 11.4 kHz) and anthropophony 
bands 7 and 8 (710 Hz to 2.8 kHz). In calculating approxi-
mations to ecoacoustic indices based on octave bands, 
here they have been re-named using the word “octave” 
to avoid confusion. Specifically, a Normalized Difference 
Octave Index (NDOI) was calculated as: NDOI = ([B9 + 
B10]–[B7 + B8])/(B7 + B8 + B9 + B10), where Bx refers 
to band x in Table 1. An Octave Diversity Index (ODI) was 
calculated using the Shannon-Weiner function as: ODI30 
= –∑px ln px, where px is the proportion of energy in band 
x, included only if its SPL was >30 dB. (The 30dB cut-off 
was simply used to focus the index on higher SPLs). For 
both indices, the calculations were made on linear meas-
ures of power, e.g. an SPL of 50 dB was first converted 
using 10(50/10) before manipulation. These measures are 
not equivalents of the usual ecoacoustic indices but have 
some of the same characteristics.

Spatial patterns
Two approaches were used to detect patterns in the sound 
pressure levels among octaves within the sound clips. 
First, treating the dB levels in the 11 octave bands as vari-
ables, a variant of spectral clustering was used to identify 
natural groupings of the sound clips while making mini-
mal assumptions about the data. Spectral clustering is a 
non-parametric eigenvector approach based on graph 
theory that is unaffected by outliers, noise in the data or 
the shape of clusters, and which often outperforms tradi-
tional clustering methods (Von Luxburg 2007, Hastie et al. 
2009). It becomes computationally unfeasible, however, 
when the sample size and number of variables are large. 
To overcome this, we used the novel implementation in 
the R package SamSPECTRAL (Zare et al. 2010, Zare and 
Shooshtari 2015) which combines a faithful sub-sampling 
scheme with spectral clustering through a modifica-
tion of the similarity matrix based on potential theory. 
Furthermore, it integrates an objective, data-driven 
method to identify the optimum number of clusters in 
contrast with techniques such as K-Means clustering or 
Kohonen’s self-organising maps that require the user to 
predefine the number of clusters to extract. In SamSPEC-
TRAL this is achieved through two tuning parameters 
which determine the resolution in the initial spectral clus-
tering stage, and then the extent to which the identified 
clusters are finally combined (Zare and Shooshtari 2015). 
After randomizing the order of sound clips to remove 
dependencies, the tuning parameters were defined on a 
random sample of 5000 clips for efficiency, and then used 
for clustering the entire data set of 52,366 sound clips 
based on the 11 octave variables. The result in our case is 

Table 1: Octave bands used for analysing the frequency 
composition of city sound clips and conversion factors 
for A-weighting (dBA).

Octave 
band

Lower 
frequency Hz

Upper 
frequency Hz

A-weighting 
factor

B1 11 22 –57.21

B2 22 44 –39.80

B3 44 88 –26.43

B4 88 177 –16.21

B5 177 355 –8.65

B6 355 710 –3.22

B7 710 1420 0.01

B8 1420 2840 1.20

B9 2840 5680 0.96

B10 5680 11360 –1.17

B11 11360 22720 –6.75
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an objective definition of how many different patterns of 
SPL exist across the octave bands within the city.

In the second approach, standardized principal compo-
nents analysis (PCA) was applied to identify linear com-
binations of the dB levels in the 11 octave bands that 
best summarised the variance across all sound clips. A 
varimax-rotated solution was chosen to provide good 
separation of octaves among principal components 
(PCs), and all PCs with eigenvalues greater than 1.0 were 
extracted. A second PCA was also run including the 11 
octave bands plus dBA, NDOI and ODI30 since, according 
to Devos (2016), ecoacoustic indices are naturally co-linear 
with each other and other acoustic information. The aim 
here was to reduce the octave bands and ecoacoustic indi-
ces to fewer, zero correlated factors to ease interpretation 
and to facilitate mapping.

The PCs and sound frequency components were mapped 
in ArcGIS 10.4 and interpolated to 30 m resolution using 
Inverse Distance Weighting (IDW) with a power of 2 and fixed 
radius of 200 m. A resolution of 30 m is appropriate because 
the sound clips were gathered during 10 seconds of walking, 
positioned using GPS with 5–10 m error, making the longest 
axis of the sampled space around the recorder about 20–30 
m in length. Each sound clip was assigned membership to a 
cluster identified by spectral clustering and a majority rule 
used to map the modal cluster per 30 m pixel.

To interpret the maps in terms of land use and land cover 
(especially relevant to the consideration of naturalness), we 
overlaid the sound data on OS MasterMap 1:1250 scale top-
ographic vector data (downloaded 10 Mar 2015 from the 
EDINA Digimap Ordnance Survey Service http://digimap.
edina.ac.uk). The vector data were rasterized to 1 m resolu-
tion and then aggregated to 30 m resolution, resulting in 
a % land cover classification based on 900 sample pixels. 
Only the % of vegetated cover is used here as a general-
ized gradient of urbanisation. In addition, we used the OS 
MasterMap Greenspace product (Ordnance Survey 2007) to 
identity polygons of greenspace within the city. To focus on 
vegetated areas, we removed the polygons whose primary 
function was classified as ‘Land Use Changing’ or ‘Private 
Garden’, and areas where the primary form was listed as 
‘Beach Or Foreshore’, ‘Inland Water’ or ‘Multi Surface’.

Social equity
To derive evidence on whether certain sections of society 
live in areas with less favourable acoustic conditions 
(European Commission 2016, Casey et al. 2017), we exam-
ined the relationship between sound characteristics and 
ethnicity or social deprivation for the 766 Output Areas 
(OAs) in Southampton. Output Areas are the UK’s base 
geographic unit for census data, comprising spatial clus-
ters of a minimum of 40 resident households and 100 
resident people, designed to have similar population 
sizes and to be as socially homogenous as possible. For 
the analyses here, ethnicity was collapsed into a single 
metric “% self-declared white” and deprivation into “% 
with no deprivation”, based on the 2011 Census returns 
(data available at https://www.nomisweb.co.uk/). Spatial 
multiple regression models (predicting three different 
sound characteristics from ethnicity and deprivation) 

were created using the R package spdep (Bivand and Piras 
2015), spatial weights being defined using queen conti-
guity and spatial dependency calculated using Moran’s I 
and Lagrange Multiplier tests. The choice between spatial 
lag and spatial error models was based on the decision 
rules of Anselin (2005). Specifically, we first compared 
the probabilities associated with the Lagrange Multiplier 
tests for spatial lag and spatial error terms. Where these 
were both significant, we chose the spatial model based 
on the smaller of the probabilities when Robust Lagrange 
Multiplier tests were applied instead. In the one case 
where a spatial lag model was selected over a spatial error 
model (see Results), we ran both models (not shown here) 
and found no material difference in their interpretation, 
meaning the outcome was robust to the model used.

A workflow for the entire analysis is given in Figure 1.

Results
Frequency composition and loudness
With the settings used (see Methods), spectral clustering 
classified 52,341 of the 52,366 sound clips into five natural 
groupings, the remaining 25 sound clips being unresolved. 
Of the classified clips, 45.7% fell into the first cluster, 35.7% 
into the second and 18.5% into the third, the remaining two 
clusters making up less than 0.1% of clips. The mean fre-
quency profiles of the 99.9% of clips comprising clusters 1, 
2 and 3 showed a gradual decline in SPL across the octaves 
(Figure 2), all profiles showing a slight peak in band 7 (710 
to 1420 Hz). Clusters 4 and 5 were very different, showing 
a wide peak in octaves 7, 8 and 9 for cluster 5, and a pro-
nounced single peak in octave 10 for cluster 4 (Figure 2). 
The elevations of the lines in Figure 2 show strong differ-
ences in the overall SPLs between clusters and this was also 
evident for dBA for the three dominant clusters (Figure 3). 
With the sample size being so large, p-values are unreliable 
indicators of differences between groups, but 95% confi-
dence intervals for the means of dBA, ODI30 and NDOI did 
not overlap for clusters 1, 2 and 3. Effect sizes (eta squared) 
were 77.2%, 4.7% and 1.6% respectively for dBA, ODI30 
and NDOI, meaning that despite the differences in spectral 
composition, the dominant feature differing among sound 
clips was loudness.

Principal components analysis extracted three rotated 
PCs from the 11 octave bands accounting for 48.8%, 
31.3% and 14.2% of the variance respectively (Table 2). 
PC1 was dominated by mid-range frequencies from 177 
to 11360 Hz, whereas PC2 featured frequencies below 117 
Hz and PC3 high frequencies from 5.7 to 22.7 kHz. Note 
that PC1 included all the frequency range defined as char-
acterising either biophony or anthropophony, without 
distinguishing them.

When the PCA was repeated including the ecoacoustic 
indices, PC1 was dominated by SPL in the frequencies 
from 117 Hz into the ultrasonic region, and overall SPL 
(dBA). PC2 again focused on lower frequencies whereas 
PC3 captured NDOI and PC4 the ODI30 (Table 3). As PCs 
are orthogonal, this is confirmation that NDOI and ODI30 
represent characteristics not captured by the octave bands 
or each other, although together they accounted for only 
17.5% of variance.

http://digimap.edina.ac.uk
http://digimap.edina.ac.uk
https://www.nomisweb.co.uk/
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Spatial patterns 
PC1 in Table 3, which represented all octave bands 5 to 
11 and overall dBA, showed strong spatial patterning in 
the city and was, in fact, indistinguishable from an inter-
polated map of dBA alone (Figure 4). Although some 
quiet areas corresponded to greenspace (e.g. the Com-
mon outlined in panel b of Figure 4), others were simply 

suburban neighbourhoods and areas with less traffic. The 
main road network is obvious as the primary source of 
broad-spectrum urban noise in the city.

High octave diversity (as represented by PC4 in Table 3) 
visually correlated with the occurrence of trees in the city 
(red areas in Figure 5). This was especially obvious on 
the Common (marked on Figure 4). Whether the source 

Figure 1: Data analysis workflow. Input data are shown in blue boxes and outputs (with corresponding Table and Figure 
numbers) are given in pink boxes. Calculation stages are shown in parallelograms.

Figure 2: Mean frequency response profiles for the five clusters recognised by spectral clustering. The light blue, grey 
and orange profiles made up 99.9% of sound clips.
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Figure 3: Frequency distribution of SPL (dBA) by spectral cluster. The means were 68.0, 49.7 and 58.8 dBA respectively 
for clusters 1, 2 and 3 (n = 52,296).
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of more diverse sounds is the trees themselves (e.g. the 
rustling of leaves) or associated birdlife is not known. 
However, this relationship was not universal and other 

parts of the city without trees also had high octave diver-
sity. As the ODI30 index only included bands with an SPL 
>30 dB, these areas might simply be noisier across a wide 
spectrum of frequencies, but further research is clearly 
needed.

NDOI (PC3: Table 3 and representing the contrast 
between biophony and anthropophony) also showed 
strong spatial patterning although its interpretation was 
not always clear (Figure 6). By overlaying areas defined as 
greenspace in the city, it is apparent that not all greens-
pace has acoustic characteristics that might be regarded as 
natural (Figure 6b) and, equally, not all acoustically natu-
ral areas were greenspace (Figure 6a). This might partly 
be explained by the presence of major roads which are 
clearly highlighted by cluster 1 from the spectral cluster-
ing (also plotted on Figure 6) as the major source of noise 
in the city with a mean SPL of 68 dB and high frequency 
components.

Figures 7 and 8 focus on opposite ends of the sound 
spectrum. The hotspot map in Figure 7 shows areas with 
the highest SPL in frequencies from 5.6 kHz into the 
ultrasonic range. The pattern is difficult to explain but 
some city locations with high SPL appear to coincide with 
industrial and commercial premises while others might be 
transient sounds from road vehicles (e.g. motorbikes). The 
map of low frequency sound (11 to 88 Hz) in Figure 8 
includes noise below the level of normal human hearing. 
The concentration of high SPL in the south-west might be 
related to port activity such as heavy goods vehicles and 
loading cranes, but sounds at this frequency are the ones 
most affected by wind noise and need careful attribution 
to source. Other locations with high SPL at low frequen-
cies appear to be redevelopment sites undergoing build-
ing work.

Relationship with vegetated land cover
When the fraction of vegetated land cover was binned into 
20% quantiles and the mean SPL extracted for each octave 
band, there was a tendency for band means to decline with 
vegetated cover (Figure 9). The separated components for 
biophony (bands 9 and 10), anthropophony (bands 7 and 
8) and dBA generally declined with vegetated cover over 
60%, although there was little difference in the NDOI or 
ODI30 as vegetated cover increased suggesting that the 
greenest pixels tended to be quieter rather than possess-
ing different frequency characteristics (Figure 10).

If sound characteristics are analysed only against the 
land cover in the immediate 30 m pixel, sound sources 
beyond the pixel are ignored, for example, an adjacent 
road. By relating the sound characteristics to clusters of 
pixels (Table 4), it is possible to account for the composi-
tion of neighbouring pixels too. Here there was a slight 
tendency for the percentage of vegetated cover to differ 
according to sound clip clusters both within the 30 m 
pixel where the recording was taken and in windows of 
3 × 3, 5 × 5 or 7 × 7 pixels i.e. up to a distance of 195 
m away (Table 4). Cluster 2 showed a slightly elevated 
percentage of vegetated cover at all patch sizes and 
cluster 5 was especially distinct although based on the 
smallest sample size. These results suggest there is some 

Table 2: Rotated component matrix for the PCA on the 
11 octave bands using varimax rotation with Kaiser 
Normalization. Highest weightings are emphasised in 
bold.

Octave band PC1 PC2 PC3

B1 .009 .944 .091

B2 .194 .946 .148

B3 .480 .810 .181

B4 .577 .730 .170

B5 .843 .444 .198

B6 .924 .242 .245

B7 .937 .176 .218

B8 .915 .172 .306

B9 .832 .200 .476

B10 .721 .218 .627

B11 .529 .255 .783

Eigenvalue 5.37 3.44 1.56

% variance explained 48.8 31.3 14.2

Cum. % var explained 48.8 80.1 94.3

Table 3: Component matrix for the PCA on the 11 octave 
bands, dBA and two ecoacoustic indices using varimax 
rotation with Kaiser Normalization. Highest weightings 
are emphasised in bold.

Variable PC1 PC2 PC3 PC4

B1 .086 .961 –.003 –.063

B2 .288 .931 .010 –.112

B3 .568 .746 –.020 –.183

B4 .666 .624 –.006 –.304

B5 .894 .340 –.117 –.219

B6 .950 .186 –.181 .007

B7 .931 .152 –.270 .128

B8 .946 .157 –.163 .168

B9 .951 .186 .085 .173

B10 .917 .208 .232 .172

B11 .815 .248 .281 .127

dBA .940 .268 –.157 –.046

NDOI –.101 –.003 .976 .054

ODI30 .213 –.264 .064 .926

Eigenvalue 7.67 3.22 1.27 1.17

% variance explained 54.8 23.0 9.1 8.4

Cum. % var explained 54.8 77.8 86.9 95.3



Alvares-Sanches et al: Spatial Variation in Sound Frequency Components Across an Urban 
Area Derived from Mobile Surveys

Art. 7, page 8 of 17

Figure 5: Spatial pattern in PC4 in Table 3 which mostly correlates with acoustic diversity above 30 dB (ODI30). Red 
colours show greater diversity in sound frequencies.

Figure 4: Almost identical spatial pattern in PC1 from Table 3 (panel a) and dBA (panel b). The Common lies within 
the dashed polygon in panel b.
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Figure 6: Spatial pattern in PC3 from Table 3 (cf. NDOI) that lies outside areas defined as greenspace (panel a) and 
within greenspace (panel b). Cluster 1 from Figure 3 is overlaid as black pixels and shows a close match to the main 
road network.

Figure 7: Hotspot map of high sound frequencies concentrated at 5.7–22.7 kHz (PC3 in Table 2). Red colours show 
higher SPL.
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relationship between the sound characteristics identified 
by the clusters and vegetated land cover at the landscape 
scale. This further supports the visual interpretations of 
the maps (Figures 5 and 6) given earlier.

Social inequity 
The different spatial patterns in Figures 4, 7 and 8 (dBA, 
high frequencies and low frequencies respectively) sug-
gest the possibility of different levels of sound exposure by 
residents across the city. If, in addition, those residents are 
spatially clustered according to socio-economic metrics, 

there may be different patterns to inequity of exposure 
depending on which sound frequency bands are used. 
To assess this, we applied multiple ordinary least squares 
(OLS) and spatial regression models to predict their mean 
values according to census Output Areas (OAs), using the 
percentage of self-declared white residents and percent-
age of residents showing no deprivation as the predictor 
variables (Table 5).

For the three sound frequency groupings, Moran’s I 
showed highly significant spatial autocorrelation among 
Output Areas and highly significant spatial lag coefficients 

Figure 8: Hotspot map of low sound frequencies concentrated below 88 Hz (PC2 in Table 2). Red colours show 
higher SPL.

Figure 9: Mean SPL profiles across 11 octave bands for sound clips grouped according to vegetated cover within the 30 
m pixel where the recording was made.
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in the regression models (see rows 6, 12 and 15 in Table 5). 
This indicates strong bias if OLS is used to analyse these data 
instead of the spatial models. For example, the apparent 
highly significant difference in dBA and low frequencies 
according to the percentage of self-declared white residents 
disappeared to non-significance when spatial dependency 
was adequately modelled. Despite this, dBA and sound 
pressure levels at low frequencies differed significantly 
according to the percentage of the population showing 
no deprivation. As the regression signs were negative, this 
indicates decreasing SPLs and less noisy environments as 
the percentage of the population showing no indicators 
of deprivation increased. The sound pressure levels at high 
frequencies also differed significantly (p < 0.05) according 
to the percentage of self-declared white residents, again 
with a negative sign indicating lower SPLs as the percent 

of white residents increased. Some caution is needed in 
interpreting these results as the effect sizes were small 
and errors showed some signs of heteroskedasticity. Also, 
although the multicollinearity condition number (Table 5, 
row 7) was below the critical threshold of 30 (Dormann et 
al. 2013), a closer look at social deprivation and ethnicity 
as independent predictors may be warranted. The crucial 
point here though is evidence of different spatial patterns 
in perceptions of inequity according to which sound fre-
quency band groupings are used.

Discussion and Conclusion
In this paper, the authors mapped the acoustic environ-
ment of an entire city using a rapid field survey technique 
as opposed to the more usual traffic count and propaga-
tion modelling or spot measurement approaches. By 

Table 4: Percentage of vegetated land cover within pixel groupings associated with the sound clip clusters derived from 
spectral clustering. Values are mean % ± the standard deviation followed by the sample size of sound clips (slight 
differences between columns due to missing pixels in the land cover data).

Cluster One 30 m pixel 3 × 3 pixels 5 × 5 pixels 7 × 7 pixels

1 18.7 ± 24.97
23885

21.1 ± 21.25
23903

21.8 ± 19.76
23918

22.3 ± 18.61
23923

2 27.3 ± 34.14
18626

28.9 ± 29.26
18665

29.7 ± 26.42
18665

30.0 ± 24.60
18665

3 21.8 ± 27.63
9687

22.6 ± 22.26
9706

23.2 ± 19.93
9707

23.6 ± 18.51
9708

4 21.6 ± 26.89
38

24.4 ± 22.18
38

24.8 ± 19.86
38

25.3 ± 18.08
38

5 60.7 ± 32.62
7

53.7 ± 34.36
7

49.1 ± 35.87
7

42.9 ± 35.32
7

Figure 10: Sound characteristics grouped by percentage of vegetated cover within the 30 m pixel where the recording 
was made.
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recording sound on the move rather than at static record-
ing stations, it was possible to gather over 52,000 georef-
erenced sound clips of 10 seconds duration each within a 
six-week survey period. Based on an average walking speed 
of 1.4 ms–1, the surveyors covered 733 km and produced 
145 hours of sound recordings. These figures may help 
future researchers to decide whether a similarly extensive 
survey is appropriate in their setting. Short duration sound 
recordings show greater between-clip variation than longer 
recordings, and some form of spatial averaging (such as the 
Inverse Distance Weighted interpolations used here) is nec-
essary to smooth out chance events (Can et al. 2014). More 
work is needed on the equivalence of mobile and static 
surveys (Guillaume et al. 2019) but we believe that our 
approach was successful in addressing the need for better 
information on the measured levels of sound energy citi-
zens are exposed to from all sources at the whole city scale 
(Basner et al. 2014). Furthermore, extensive surveys can 
go some way to overcoming the limitations highlighted 
by Fairbrass et al. (2017) that arise when studying only a 
few land cover types. The outputs produced in this paper 
are largely consistent with expectation (e.g. dBA tracking 
the main road network – Figure 4) but with additional 
information across a wide frequency range. An important 
refinement for the future would be to include the tempo-
ral component of the acoustic environment (Hong and 
Jeon 2017), omitted in this paper for brevity.

No attempt was made here to consider the human 
perception of sounds in the city. Our survey therefore 

focused on the acoustic environment, defined in ISO 
12913-1:2014 as the “sound at the receiver from all sound 
sources as modified by the environment”. In contrast, the 
term “soundscape” (formerly used in a general sense to 
indicate the combination of sounds in a landscape) is now 
reserved for the “acoustic environment as perceived or 
experienced and/or understood by a person or people, in 
context” (see ISO 12913-1:2014 and Hong and Jeon 2017). 
There is thus a distinction between studies that focus on 
perception (a psycho-acoustic problem) and those that 
consider exposure to levels of sound which may or may 
not be perceived. For example, there are potential health 
impacts from ultrasound which lies beyond the range of 
human hearing and therefore cannot be perceived by the 
individual being exposed (Leighton 2016). Human acous-
tic perception is also irrelevant in biodiversity studies.

By undertaking an empirical study of an entire city 
rather than at selected study sites, it was possible to 
address a number of research questions at the scale rele-
vant to urban planners. To address our first research ques-
tion (whether sound frequency composition differs across 
urban space), two approaches were used to identify group-
ings in the sound pressure levels among octave bands 
within the sound clips. In the first, spectral clustering 
was applied to find natural groupings in the data, imple-
mented using the R code SamSPECTRAL (Zare et al. 2010, 
Zare and Shooshtari 2015). This code was developed for 
large flow cytometry data sets and we know of no other 
application to sound data. Despite the need to set a scaling 

Table 5: Evidence of social inequity in noise exposure as assessed by Ordinary Least Squares (OLS) and Spatial Lag or 
Spatial Error models. AIC = Akaike’s Information Criterion. ns = not significant, * p < 0.05; ** p < 0.01; *** p < 0.001. 
–ve or +ve indicate the sign of the regression coefficient. (For technical details of the tests applied see Anselin, 2005; 
Bivand & Piras, 2015).

dBA Low frequen-
cies (Table 2: 

PC2)

High frequen-
cies (Table 2: 

PC3)

OLS % white –ve,*** +ve,*** –ve,*

% with no deprivation –ve,** –ve,*** –ve,*

Adjusted R2 3.9% 10.7% 1.0%

AIC 4415.13 731.85 119.87

Moran’s I 20.92*** 21.86*** 20.48***

Multicollinearity condition number 18.46 18.46 18.46

Jarque-Bera test for normality of errors 5.60, ns 24.19*** 32.76***

Breusch-Pagan test for heteroskedasticity 0.19, ns 5.29, ns 5.41, ns

Spatial 
regression

% white –ve, ns +ve, ns –ve,*

% with no deprivation –ve, ** –ve,*** –ve, ns

Lag coefficient +ve, *** +ve,*** +ve,***

Pseudo R2 48.0% 55.5% 43.5%

AIC 4059.15 317.91 –206.80

Likelihood ratio test for spatial dependence 355.98*** 415.94*** 326.66***

Lag or error Error Lag Error

Breusch-Pagan test for heteroskedasticity 4.80, ns 12.52** 4.30, ns
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parameter and separation factor, we found the number of 
clusters defined after the initial separation and then final 
combining stages was always low. SamSPECTRAL is good 
at separating rare and overlapping clusters (Zare et al. 
2010), which are often challenging for other algorithms, 
and we therefore accept that only a few distinctive clusters 
exist in the city. In fact, at observer level, Southampton is 
dominated by broad-spectrum noise that naturally clus-
ters 99.9% of locations into just three groups with mean 
levels at 50, 59 and 68 dBA (Figure 3). As these are aver-
aged levels along the routes our surveyors walked, some 
routes taken by pedestrians are likely to include far higher 
noise levels that could potentially impact on human 
health. The cluster of locations with the loudest sounds 
were characterised by a broader shoulder at frequencies 
below 88 Hz and the largest difference in sound pressure 
levels between clusters occurred at around 710 to 1420 
Hz, within our definition of anthropophony. This, plus 
the fact that the commonest cluster mapped neatly onto 
the main road network (Figure 6), leaves little doubt that 
road traffic is the principal source of noise in the city and, 
in our experience, there are few places where the sound 
of traffic is not audible. Further work is encouraged using 
spectral clustering on sound data, for example, examin-
ing how choice of similarity graph and associated metrics 
affect the outcome (Hastie et al. 2009).

As an alternative to spectral clustering, the simpler 
(but less robust) principal components analysis was also 
applied to the sound data as an unsupervised classifier 
(Hastie et al. 2009). Two key findings emerged: (i) that 
when octave bands were used alone, the first three princi-
pal axes extracted corresponded to mid, low and high fre-
quencies; and (ii) when ecoacoustic indices and dBA were 
also included, these fell onto their own principal compo-
nents. By definition, these findings indicate weak correla-
tion between the SPLs in the low, mid and high frequency 
ranges that translate into different spatial patterns in 
sound frequency components. The PCAs also indicate that 
the ecoacoustic indices contain information that is unique 
between them and in comparison with octave band com-
binations such as dBA. This somewhat counters the view 
that ecoacoustic indices are colinear with each other and 
other acoustic metrics (Devos 2016). Thus despite the 
overwhelming nature of noise in the city, principal com-
ponents analysis was able to recognise distinctive contri-
butions (totalling ~17% variance) from the ecoacoustic 
indices used here. This suggests that some signal of the 
natural acoustic environment might be detected although 
in combination with anthropogenic sounds its influence 
in terms of SPL is weak (Devos 2016). 

In examining our second research question, whether 
ecoacoustic indices are useful for characterising natural-
ness across the city, we found some (but not a unique) 
correspondence between the principal component sum-
marizing NDOI and greenspace across the city (Figure 6). 
Furthermore, analysis showed some tendency for noise to 
decrease when vegetation cover was over 60% although 
this could be an artefact of those areas having fewer roads 
rather than an attenuating effect of vegetation. In reality, 
many areas of greenspace are affected by adjacent road 

traffic noise and there are few places where it is quiet 
enough to appreciate the sounds of nature (biophony: Joo 
et al. 2011, Pijanowski et al. 2011). This should not be seen 
as a failure of NDOI to recognise naturalness, but rather 
that other factors are involved. Possibly of more concern 
was the finding that NDOI was capable of suggesting nat-
uralness where there was no greenspace. Although most 
anthropogenic sounds occur at low frequencies (Joo et al. 
2011), even the upper frequencies more characteristic of 
biophony appeared to be dominated by human-generated 
sounds in Southampton’s urban environment. Thus NDOI 
(an index of biophony and anthropophony) showed lim-
ited value as a measure of naturalness when used in iso-
lation. A similar conclusion was reached by Fairbrass et 
al. (2017) who found London’s urban environment to be 
dominated by a wider frequency range of anthropogenic 
sounds than occur in the more natural habitats where 
ecoacoustic indices were developed. One limitation of 
the data analysed here is that surveys took place only in 
the summer months when the breeding season of birds 
is over and they are less inclined to sing; this may have 
weakened the prominence of biophony in the recordings. 
A further complicating factor is the lack of a single defini-
tion of greenspace (Taylor and Hochuli 2017) and this is 
especially problematic in cities. We used as our starting 
point the OS MasterMap Greenspace product (Ordnance 
Survey 2007) but removed private gardens (and a few 
other features – see Methods) because gardens are mixed 
surfaces of unmapped composition which dominate the 
city. While some definitions of greenspace include private 
gardens, others consider only publicly-accessible land 
(Taylor and Hochuli 2017). However, in terms of the acous-
tic environment and indeed for biodiversity, gardens may 
actually function as “natural” habitats and could explain 
some of the anomalies in Figure 6a. More work is clearly 
needed on the role of private gardens in the urban acous-
tic environment.

These findings have implications for Southampton City 
Council’s Green Space Strategy which has the admirable 
aims of enhancing economic value, social inclusivity and 
cohesion, health and wellbeing, and biodiversity (SCC 
2008a, 2008b). Neither document mentions the impact 
of noise or sound on greenspace and our data suggest 
that many green urban areas may simply be too narrow 
to preserve a natural acoustic environment. If the city 
were to devote space to soundscape design for the pub-
lic good (Brown and Grimwood 2016) and for biodiver-
sity, one obvious large location would be the Common 
(Figure 4) which already has protected status as a Site of 
Special Scientific Interest. (Opportunities for creating new 
greenspace are almost non-existent). However, the heavy 
traffic that travels north-south along the Avenue bisects 
the Common, lessening the chance for the development 
of a natural acoustic environment (see the dominance 
of noise in Figure 4b). The incursion of some noise into 
greenspace, however, may not lessen its benefits to human 
well-being (in contrast to biodiversity) since the perceived 
benefits of vegetation in noise reduction far outweigh the 
actual attenuation achieved (Van Renterghem 2018). Very 
little appears to be known about the difference between 
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exposure to the acoustic environment and its perception 
in non-human species. The fact that wild species occupy 
noisy urban areas in which sounds interfere with their 
ability to breed (Warren et al. 2006, Halfwerk et al. 2011) 
might suggest that species perceive a site as suitable 
breeding habitat when it is not, an example of an “ecologi-
cal trap” (e.g. Hale & Swearer, 2016).

Our third research question asked whether perceptions 
of social inequity to sound exposure differed according 
to the frequency bands considered. We found that resi-
dents living in different parts of the city partitioned by 
census Output Area were exposed to unequal levels of 
noise and from different frequency components. The 
strongest effect (but still relatively weak) was that those 
living with social deprivation were exposed to noisier 
environments at low frequencies. The difference was less 
significant for dBA and not significant (at p < 0.05) for 
high frequencies. There was also a very slight tendency 
for exposure to noise to be lower in areas with a higher 
percentage of white residents but only at high frequen-
cies (once adjustment had been made for spatial auto-
correlation). Other European studies have found similar 
inequity in noise exposure in London (Tonne et al. 2018), 
Hamburg (von Szombathely et al. 2018) and Bradford 
(Mueller et al. 2018), but not in Paris (Havard et al. 2011) 
or Amsterdam (Leijssen et al. 2019). However, none of 
these studies considered differences in exposure accord-
ing to frequency band because measurement data were 
lacking. Given the relationship between the characteris-
tics of the acoustic environment and urban land use, our 
findings for Southampton are possibly a consequence 
of the unequal access to greenspace experienced by dif-
ferent societal groupings, an effect previously noted for 
Leicester (Comber et al. 2008). The variation in people’s 
responses to sounds (Sørensen et al. 2012) makes it diffi-
cult to generalise about what the consequences of differ-
ential exposure to sound frequency components might 
be and also what might be regarded as a bad or a pleasant 
soundscape. This is something that might itself vary with 
experience and ethnicity (Moscoso et al. 2018). However, 
having acoustic data across an entire city makes it pos-
sible to consider the impacts of alternative locations for 
developments on issues of equity within the planning 
process (Comber et al. 2008), an important step towards 
sustainable urban development.
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