271 research outputs found

    Synthesis, structural and magnetic characterization of lead-metaniobate/cobalt-ferrite nanocomposite films deposited by pulsed laser ablation

    Get PDF
    Detailed structural, microstructural and magnetic measurements were performed on (PbNb2O6)(1-x) -(CoFe2O4) (x) nanocomposite thin films deposited by laser ablation on Si(001)\Pt substrates, with different cobalt ferrite concentrations. The tuning of the lead concentration, due to the lead volatility, was found to be particularly important in order to obtain the orthorhombic (ferroelectric) lead niobate phase. The lattice parameter of CoFe2O4 was below the bulk value, indicating the presence of compressive strains on this phase. A magnetic anisotropy was observed, which favored the orientation of the magnetization in the direction perpendicular to the plane of the films, for cobalt ferrite concentrations 40-50 %. The shape, stress and magnetocrystalline anisotropy fields on the composites were calculated and compared. It was found that the perpendicular magnetic anisotropy was induced by the presence of strain on the ferrite phase in the films.- This work has been supported by Fundacao para a Ciencia e Tecnologia (FCT) and FEDER, through the projects POCI/CTM/60181/2004 and PTDC/CTM/099415/2008. J. Barbosa and I. T. Gomes gratefully acknowledge Ph.D. grants from Fundacao para a Ciencia e Tecnologia (SFRH/BD/41913/2007 and SFRH/BD/36348/2007, respectively).info:eu-repo/semantics/publishedVersio

    Photosynthesis by six portuguese maize cultivars during drought stress and recovery

    Get PDF
    Photosynthesis, chlorophyll fluorescence and leaf water parameters were measured in six Portuguese maize (Zea mays L.) cultivars during and following a period of drought stress. The leaf relative water content (RWC) responded differently among cultivars but, except for cultivar PB369, recovered close to initial values after watering was restored. Photosynthetic rate and stomatal conductance decreased with drought but more slowly in cultivars PB269 and PB260 than in cultivars AD3R, PB64, PB304 and PB369. Water use efficiency (WUE) decreased during the water stress treatment although with cultivar PB260 the decrease was marked only when the RWC fell below 40%. Recovery of WUE was seen with all cultivars except PB369. The maximum quantum efficiency of photosystem II, the photochemical quenching coefficient, the electron transport rate in PSII and the estimated functional plastoquinone pool tended to decrease with drought, while the non -photochemical quenching coefficient increased. The parameters estimated from chlorophyll fluorescence did not recover in PB369, during re - watering. The results show that PB260 and PB269 were the most tolerant and PB369 was the least tolerant cultivars to water stress. The variation found amongst the cultivars tested suggests the existence of valuable genetic resources for crop improvement in relation to drought tolerance

    Participation of Candida albicans transcription factor Rlm1 in cell wall biogenesis and virulence

    Get PDF
    Candida albicans cell wall is important for growth and interaction with the environment. RLM1 is one of the putative transcription factors involved in the cell wall integrity pathway, which plays an important role in the maintenance of the cell wall integrity. In this work we investigated the involvement of RLM1 in the cell wall biogenesis and in virulence. Newly constructed C. albicans Δ/Δrlm1 mutants showed typical cell wall weakening phenotypes, such as hypersensitivity to Congo Red, Calcofluor White, and caspofungin (phenotype reverted in the presence of sorbitol), confirming the involvement of RLM1 in the cell wall integrity. Additionally, the cell wall of C. albicans Δ/Δrlm1 showed a significant increase in chitin (213%) and reduction in mannans (60%), in comparison with the wild-type, results that are consistent with cell wall remodelling. Microarray analysis in the absence of any stress showed that deletion of RLM1 in C. albicans significantly down-regulated genes involved in carbohydrate catabolism such as DAK2, GLK4, NHT1 and TPS1, up-regulated genes involved in the utilization of alternative carbon sources, like AGP2, SOU1, SAP6, CIT1 or GAL4, and genes involved in cell adhesion like ECE1, ALS1, ALS3, HWP1 or RBT1. In agreement with the microarray results adhesion assays showed an increased amount of adhering cells and total biomass in the mutant strain, in comparison with the wild-type. C. albicans mutant Δ/Δrlm1 strain was also found to be less virulent than the wild-type and complemented strains in the murine model of disseminated candidiasis. Overall, we showed that in the absence of RLM1 the modifications in the cell wall composition alter yeast interaction with the environment, with consequences in adhesion ability and virulence. The gene expression findings suggest that this gene participates in the cell wall biogenesis, with the mutant rearranging its metabolic pathways to allow the use of alternative carbon sources.This work was supported by CBMA (Centre of Molecular and Environmental Biology) through the FCT (Fundacao para a Ciencia e Tecnologia) project PEst-C/BIA/UI4050/2011. Yolanda Delgado-Silva was supported by an ALbAN scholarship (No E07D400922PE), and Alexandra Correia by SFRH/BD/31354/2006 fellowship. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Enzymatic Glucose Based Bio batteries: Bioenergy to Fuel Next Generation Devices

    Full text link
    [EN] This article consists of a review of the main concepts and paradigms established in the field of biological fuel cells or biofuel cells. The aim is to provide an overview of the current panorama, basic concepts, and methodologies used in the field of enzymatic biofuel cells, as well as the applications of these bio-systems in flexible electronics and implantable or portable devices. Finally, the challenges needing to be addressed in the development of biofuel cells capable of supplying power to small size devices with applications in areas related to health and well-being or next-generation portable devices are analyzed. The aim of this study is to contribute to biofuel cell technology development; this is a multidisciplinary topic about which review articles related to different scientific areas, from Materials Science to technology applications, can be found. With this article, the authors intend to reach a wide readership in order to spread biofuel cell technology for different scientific profiles and boost new contributions and developments to overcome future challenges.Financial support from the Spanish Ministry of Science, Innovation and University, through the State Program for Talent and Employability Promotion 2013-2016 by means of Torres Quevedo research contract in the framework of Bio2 project (PTQ-14-07145) and from the Instituto Valenciano de Competitividad Empresarial-IVACE-GVA (BioSensCell project)Buaki-Sogo, M.; García-Carmona, L.; Gil Agustí, MT.; Zubizarreta Saenz De Zaitegui, L.; García Pellicer, M.; Quijano-Lopez, A. (2020). Enzymatic Glucose Based Bio batteries: Bioenergy to Fuel Next Generation Devices. Topics in Current Chemistry (Online). 378(6):1-28. https://doi.org/10.1007/s41061-020-00312-8S1283786Schlögl R (2015) The revolution continues: Energiewende 2.0. Angew Chem Int Ed 54:4436–4439Mitcheson PD, Yeatman EM, Rao GK, Holmes AS, Green TC (2008) Energy harvesting from human and machine motion for wireless electronic devices. Proc IEEE 96(9):1457–1486Wang ZL, Wu W (2012) Nanotechnology-enabled energy harvesting for self-powered micro-/nanosystems. Angew Chem Int Ed 51:11700-11721Lamy C, Lima A, LeRhun V, Delime F, Coutanceau C, Léger J-M (2002) Recent advances in the development of direct alcohol fuel cells (DAFC). J Power Sources 105:283Cheng X, Shi Z, Glass N, Zhang L, Zhang J, Song D, Liu Z-S, Wang H, Shen J (2007) A review of PEM hydrogen fuel cell contamination: impacts, mechanisms, and mitigation. J Power Sources 165:739Boudghere Stambouli A, Traversa E (2002) Solid oxide fuel cells (SOFC): a review of an environmentally clean and efficient source of energy. Renew Sustain Energy Rev 6:433–455Qiao Y, Li CM (2011) Nanostructured catalyst in fuel cells. J Mater Chem 21:4027–4036Edwards PP, Kuznetsov VL, David WIF, Brandon NP (2008) Hydrogen and fuel cells: towards sustainable energy future. Energy Policy 36:4356–4362Kirubakaran A, Jain S, Nema RK (2009) A review on fuel cell technologies and power electronic interface. Renew Sustain Energy 13:2430–2440Kerzenmacher S, Ducree J, Zengerle R, von Stetten F (2008) An abiotically catalyzed glucose fuel cell for powering medical implants: reconstructed manufacturing protocol and analysis of performance. J Power Sources 182:66–75Drake RF, Kusserow BK, Messinger S, Matsuda S (1970) A tissue implantable fuel cell power supply. Trans Am Soc Artif Intern Organs 16:199–205Giner J, Holleck G, Malachesky PA (1973) Eine implantierbare Brennstoffzelle zum Betrieb eines mechanischen Herzens. Phys Chem 77:782–783. https://doi.org/10.1002/bbpc.19730771009Cosnier S, LeGoff A, Holzinger M (2014) Towards glucose biofuel cells implanted in human body for powering artificial organs: review. Electrochem Commun 38:19–23Katz E (2015) Implantable biofuel cells operating in vivo—potential power sources for bioelectronic devices. Bioelectron Med 2:1–12Bullen RA, Arnot TC, Lakeman JB, Walsh FC (2006a) Biofuel cells and their development . Biosens Bioelectron 21:2015–2045Cooney MJ, Svoboda V, Lau C, Martin G, Minteer SD (2008) Enzyme catalysed biofuel cells. Energy Environ Sci 1:320–337Cracknell JA, Vincent KA, Armstrong FA (2008) Enzymes as working or inspirational electrocatalysts for fuel cells and electrolysis. Chem Rev 108:2439–2461Sheldon RA (2007) Enzyme immobilization: the quest for optimum performance. Adv Synth Catal 349:1289–1307Bullen RA, Arnot TC, Lakeman JB, Walsh FC (2006b) Biofuel cells and their development. Biosens Bioelectron 21:2015–2045Koch C, Popiel D, Harnisch F (2014) Functional redundancy of microbial anodes fed by domestic wastewater. ChemElectroChem 1:1923–1931Mano N, Mao F, Heller A (2003) Characteristics of a miniature compartment-less glucose−O2 biofuel cell and its operation in a living plant. J Am Chem Soc 125(21):6588–6594Mano N, Mao F, Heller A (2002) A miniature biofuel cell operating in a physiological buffer. J Am Chem Soc 124(44):12962–12963Bruen D, Delaney C, Florea L, Diamond D (2017) Glucose sensing for diabetes monitoring: recent developments. Sensors 17:1866Falk M, Blum Z, Shleev S (2012) Direct electron transfer based enzymatic fuel cells. Electrochim Acta 82:191–202White HB (1976) Coenzymes as fossils of an earlier metabolic state. J Mol Evol 7:101–104Broderick JB (2001) Coenzymes and cofactors. In: eLS. Wiley, Chichester. https://www.els.net. https://doi.org/10.1038/npg.els.0000631Sakurai T, Kataoka K (2007) Basic and applied features of multicopper oxidases, CueO, bilirubin oxidase, and laccase. Chem Rec 7:220–229Bankar SB, Bule MV, Singhal RS, Ananthanarayan L (2009) Glucose oxidase—an overview. Biotech Adv 27:489–501Ferri S, Kojima K, Sode K (2011) Review of glucose oxidases and glucose dehydrogenases: a bird’s eye view of glucose sensing enzymes. J Diabetes Sci Technol 5:1068–1076Katz E, MacVittie K (2013) Implanted biofuel cells operating in vivo—methods, applications and perspectives—feature article. Energy Environ Sci 6:2791–2803Ghindilis AL, Atanasov P, Wilkins E (1997) Enzyme catalysed direct electron transfer: fundamentals and analytical applications. Electroanalysis 9:661–674Von Woedtke Th, Fisher U, Abel P (1994) Glucose oxidase electrodes: effect of H2O2 on enzyme activity? Biosens Bioelectron 9:65–71Kleppe K (1966) The effect of H2O2 on glucose oxidase from Aspergillus niger. Biochemistry 5:139–143Zebda A, Godran C, Le Goff A, Holzinger M, Cinquin P, Cosnier S (2011) Mediatorless high-power glucose biofuel cells based on compressed carbon nanotube-enzyme electrodes. Nat Commun 2:370Borenstein A, Hanna O, Attias R, Luski S, Brousse T, Aurbach D (2017) Carbon-based composite materials for supercapacitor electrodes: a review. J Mater Chem A 5:12653–12672Angione MD, Pilolli R, Cotrone S, Magliulo M, Mallardi A, Palazzo G, Sabbatini L, Fine D, Dodabalapur A, Lioffi N, Torsi L (2011) Carbon based nanomaterials for electronic bio-sensing. Mat Today 14:424–433Cha C, Shin SR, Annabi N, Dokmeci MR, Khademhosseini A (2013) Carbon based nanomaterials: multifunctional materials for biomedical engineering. ACS Nano 7:2891–2897Wang Z, Dai Z (2015) Carbon nanomaterials-based electrochemical biosensors: an overview. Nanoscale 7:6420–6431Jariwala D, Sangwan VK, Lauhon LJ, Marks TJ, Hersam MC (2013) Carbon nanomaterials for electronics, optoelectronics, photovoltaics and sensing. Chem Soc Rev 42:2824–2860Babadi AA, Bagheri S, Abdul Hamid SB (2016) Progress on implantable biofuel cell: nano-carbon functionalization for enzyme immobilization enhancement. Biosens Bioelectron 15:850–860Osadebe I, Leech D (2014) Effect of multi-walled carbon nanotubes on glucose oxidation by glucose oxidase or a flavin-dependent glucose dehydrogenase in redox-polymer-mediated enzymatic fuel cell anodes. ChemElectroChem 1:1988–1993Si P, Huang Y, Wang T, Ma J (2013) Nanomaterials for electrochemical non-enzymatic glucose biosensors. RSC Adv 3:3487–3502Putzbach W, Ronkainen NJ (2013) Immobilization techniques in the fabrication of nanomaterial-based electrochemical biosensors: a review. Sensors 13(4):4811–4840Walcarius A, Minteer SD, Wang J, Lin Y, Merkoçi A (2013) Nanomaterials for bio-functionalized electrodes: recent trends. J Mater Chem B 1:4878–4908Datta S, Christena LR, Rajaram YRS (2013) Enzyme immobilization: an overview on techniques and support materials. 3 Biotech 3(1):1–9Ivanov I, Vidaković-Koch T, Sundmaker K (2010) Recent advances in enzymatic fuel cells; experiments and modelling. Energies 3:803–846Nguyen HH, Kim M (2017) An overview of techniques in enzyme immobilization. Appl Sci Converg Technol 26(6):157–163Fu J, Reinhold J, Woodbury NW (2011) Peptide-modified surfaces for enzyme immobilization. PLoS One 6(4):e18692Lee DH, Park CH, Yeo JM, Kim SW (2006) Lipase immobilization on silica gel using a cross-linking method. J Ind Eng Chem 12(5):777–782Szymańska K, Bryjak J, Jarzębski AB (2009) Immobilization of invertase on mesoporous silicas to obtain hyper active biocatalysts. Top Catal 52:1030–1036Al-Lolage F, Meneghello M, Ma S, Ludwig R, Barlett PN (2017) A flexible method for the stable, covalent immobilization of enzymes at electrode surfaces. ChemElectroChem 4:1528–1534Gutierrez-Sanchez C, Shleev S, De Lacey AL, Pita M (2015) Third-generation oxygen amperometric biosensor based on Trametes hirsuta laccase covalently bound to graphite electrode. Chem Pap 69:237–240Pita M, Gutierrez-Sanchez C, Toscano MD, Shleev S, De Lacey AL (2013) Oxygen biosensor based on bilirubin oxidase immobilized on a nanostructured gold electrode. Bioelectrochemistry 94:69–74Vaz-Dominguez C, Campuzano S, Rüdiger O, Pita M, Gorbacheva M, Shleev S, Fernandez VM, de Lacey LA (2008) Laccase electrode for direct electrocatalytic reduction of O2 to H2O with high-operational stability and resistance to chloride inhibition. Biosens Bioelectron 24(4):531–537Gutiérrez-Sánchez C, Jia W, Beyl Y, Pita M, Schuhmann W, de Lacey LA, Stoica L (2012) Enhanced direct electron transfer between laccase and hierarchical carbon microfibers/carbon nanotubes composite electrodes. Comparison of three enzyme immobilization methods. Electrochim Acta 82:218–223Lv Y, Jin S, Wang Y, Lun Z, Xia C (2016) Recent advances in the application of nanomaterials in enzymatic glucose sensors. J Iran Chem Soc 13(10):1767–1776Zhao C, Gai P, Song R, Chen Y, Zhang J, Zhu J-J (2017) Nanostructured material-based biofuel cells: recent advances and future prospects. Chem Soc Rev 46:1545–1564Yu EH, Scott K (2010) Enzymatic biofuel cells—fabrication of enzyme electrodes. Energies 3:23–42Minteer SD, Atanassov P, Luckarift HR, Johnson GR (2013) New materials for biological fuel cells. Mater Today 15(4):166–173Sarma AK, Vatsyayan P, Goswami P, Minteer SD (2009) Recent advances in material science for developing enzyme electrodes. Biosens Bioelectron 24:2313–2322Jesionowski T, Zdarta J, Krajewska B (2014) Enzyme immobilization by adsorption: a review. Adsorption 20:801–821Sardar M, Gupta MN (2005) Immobilization of tomato pectinase on Con A-Seralose 4B by bioaffinity layering. Enzyme Microbial Technol 37:355–359Sheldon RA (2011) Characteristic features and biotechnological applications of cross-linked enzyme aggregates (CLEAs). Appl Microbiol Biotechnol 92:467–477Velasco-Lozano S, López-Gallego F, Mateos-Díaz JC, Favela-Torres E (2015) Cross-linked enzyme aggregates (CLEA) in enzyme improvement—a review. Biocatalysis 1:166–177Cosnier S (1999) Biomolecule immobilization on electrode surfaces by entrapment or attachment to electrochemically polymerized films. A review. Biosen Bioelectron 14:443–456Heller A (1990) Electrical wiring of redox enzymes. Acc Chem Res 29:128–134Heller A (1992) Electrical connection of enzyme redox centres to electrodes. J Phys Chem 96:3579–3587Martins MVA, Pereira AR, Luz RAS, Iost RM, Crespilho FN (2014) Evidence of short-range electron transfer of a redox enzyme on graphene oxide electrodes. Phys Chem Chem Phys 16:17426–17436Luz RAS, Pereira AR, de Souza JCP, Sales FCPF, Crespilho FN (2014) Enzyme biofuel cells: thermodynamics. Kinetics and challenges in applicability. ChemElectroChem 1(11):1751–1777Neto SA, De Andrade AR (2013) New energy sources: the enzymatic biofuel cell. J Braz Chem Soc 24(12):1891–1912Rapoport BI, Kedzierski JT, Sarpeshkar R (2012) A glucose fuel cell for implantable brain–machine interfaces. PLoS One 7(6):6 e38436Zebda A, Alcaraz J-P, Vadgama P, Shleev S, Minteer SD, Boucher F, Cinquin P, Martin DK (2018) Challenges for successful implantation of biofuel cells. Bioelectrochemistry 124:57–72Ferraris RP, Diamond J (1997) Regulation of intestinal sugar transport. Physiol Rev 77:257–301Sprague JE, Arbeláez AM (2011) Glucose counterregulatory responses to hypoglicemia. Pediatr Endocrinol Rev 9:463–475Slaughter G, Kulkarni T (2019) Detection of human plasma glucose using a self-powered glucose biosensor. Energies 12:825Rathee K, Dhull V, Dhull R, Singh S (2016) Biosensors based on electrochemical lactate detection: a comprehensive review. Biochem Biophys Rep 5:35–54Koushanpour A, Gamella M, Katz E (2017) A biofuel cell based on biocatalytic reactions of lactate on both anode and cathode electrodes—extracting electrical power from human sweat. Electroanalysis 29:1602–1611Yao Y, Li H, Wang D, Liu C, Zhang C (2017) An electrochemiluminescence cloth-based biosensor with smartphone-based imaging for detection of lactate in saliva. Analyst 142:3715–3724Pankratov D, González-Arribas E, Blum Z, Shleev S (2016) Tear based bioelectronics. Electroanalysis 28:1250–1266Krogstad AL, Jansson PA, Gisslen P, Lönnroth P (1996) Microdialysis methodology for the measurement of dermal interstitial fluid in humans. Br J Dermatol 134(6):1005–1012Bandodkar AJ, Wang J (2016) Wearable biofuel cells: a review. Electroanalysis 28:1188–1200Jia W, Valdés-Ramírez G, Bandodkar AJ, Windmiller JR, Wang J (2013) Epidermal biofuel cells: energy harvesting from human perspiration. Angew Chem Int Ed 52:1–5Jeerapan I, Sempionatto JR, Pavinatto A, You J-M, Wang J (2016) Stretchable biofuel cells as wearable textile-based self-powered sensors. J Mater Chem A 4:18342–18353Valdés-Ramírez G, Li Y-G, Kima J, Jia W, Bandodkar AJ, Nuñez-Flores R, Miller PR, Wu S-Y, Narayan R, Windmiller JR, Polsky R, Wang J (2016) Microneedle-based self-powered glucose sensor. Electrochem Commun 47:58–62Gamella M, Koushanpour A, Katz E (2018) Biofuel cells—activation of micro- and macro- electronic devices. Bioelectrochemistry 119:33–42Mano N, Mao F, Shin W, Chen T, Heller A (2003) A miniature biofuel cell operating at 0.78 V. Chem Commun 20:518–519Shi B, Li Z, Fan Y (2018) Implantable energy harvesting devices. Adv Mater 30:1801511MacVittie K, Halámek J, Halámková L, Southcott M, Jemison WD, Lobel R, Katz E (2013) From “cyborg” lobsters to a pacemaker powered by implantable biofuel cells. Energy Environ Sci 6:81–86Szczupak A, Halámek J, Halámková L, Bocharova V, Alfonta L, Katz E (2012) Living battery—biofuel cells operating in vivo in clams. Energy Environ Sci 5:8891–8895Southcott M, MacVittie K, Halámek J, Halámková L, Jemison WD, Lobel R, Katz E (2013) A pacemaker powered by an implantable biofuel cell operating under conditions mimicking the human blood circulatory system—battery not included. Phys Chem Chem Phys 15:6278–6283MacVittie K, Conlon T, Katz E (2015) A wireless transmission system powered by an enzyme biofuel cell implanted in an orange. Bioelectrochemistry 106:28–33Aghahosseini H, Ramazani A, Asiabi PA, Gouranlou F, Hosseini F, Rezaei A, Min B-K, Joo SW (2016) Glucose-based biofuel cells: nanotechnology as a vital science in biofuel cell performance. Nanochem Res 1(2):83–204Zebda A, Cosnier S, Alcaraz J-P, Holzinger M, Le Goff A, Gondran C, Boucher F, Giroud F, Gorgy K, Lamraoui H, Cinquin P (2013) Single glucose biofuel cells implanted in rats power electronic devices. Sci Rep 2013:1516Ichi-Ribault SE, Alcaraz J-P, Boucher F, Boutaud B, Dalmolin R, Boutonnat J, Cinquin P, Zebda A, Martin DK (2018) Remote wireless control of an enzymatic biofuel cell implanted in a rabbit for 2 months. Electrochim Acta 269:360–366Bandodkar A (2017) Review—wearable biofuel cells: past, present and future. J Electrochem Soc 164(3):H3007–H3014Coman V, Ludwig R, Harreither W, Haltrich D, Gorton L, Ruzgas T, Shleev S (2010) A direct electron transfer-based glucose/oxygen biofuel cell operating in human serum. Fuel Cells 10(1):9–16Shoji K, Akiyama Y, Suzuki M, Nakamura N, Ohno H, Morishima K (2016) Biofuel cell backpacked insect and its application to wireless sensing. Biosens Bioelectron 78:390–395Reuillard B, Abreu C, Lalaoui N, Le Goff A, Holzinger M, Ondel O, Buret F, Cosnier S (2015) One-year stability for a glucose/oxygen biofuel cell combined with pH reactivation of the laccase/carbon nanotube biocathode. Bioelectrochemistry 106:73–76Sales FCPF, Iost RM, Martins MVA, Almeida MC, Crespilho FN (2013) An intravenous implantable glucose/dioxygen biofuel cell with modified flexible carbon fiber electrodes. Lab Chip 13:468Falk M, Narvez Villarrubia CW, Babanova S, Atanassov P, Shleev S (2013) Biofuel cells for biomedical applications: colonizing the animal kingdom. ChemPhysChem 14:2045–2058Rasmussen M, Ritzmann RE, Lee I, Pollack AJ, Scherson D (2012) An implantable biofuel cell for a live insect. J Am Chem Soc 134(3):1458–1460Halámková L, Halámek J, Bocharova V, Szczupak A, Alfonta L, Katz E (2012) Implanted biofuel cell operating in a living snail. J Am Chem Soc 134:5040–5043Cinquin P, Gondran C, Giroud F, Mazabrard S, Pellisier A, Boucher F, Alcaraz J-P, Gorgy K, Lenouvel F, Mathé S, Porcu P, Cosnier S (2010) A glucose biofuel cell implanted in rats. Plos One 5(5):e010476Chen C, Xie Q, Yang D, Xiao H, Fu Y, Tan S, Yao S (2013) Recent advances in electrochemical glucose biosensors: a review. RSC Adv 3:4473–4491Andoralov V, Falk M, Suyatin DB, Granmo M, Sotres J, Ludwig R, Popov VO, Schouenborg J, Blum Z, Shleev S (2013) Biofuel cell based on microscale nanostructured electrodes with inductive coupling to rat brain neuronsVerbeek MM, Leen WG, Willemsen MA, Slats D, Claassen JA (2016) Hourly analysis of cerebrospinal fluid glucose shows large diurnal fluctuations. J Cereb Blood F Met 36(5):899–902González-Guerrero MJ, Del Campo FJ, Esquivel JP, Leech D, Sabaté N (2017) Paper-based microfluidic biofuel cell operating under glucose concentrations within physiological range. Biosens Bioelectron 90:475–480Takeuchi ES, Leising RA (2002) Lithium batteries for biomedical applications. MRS Bull 27(8):624–627Bock DC, Marschilok A, Takeuchi KJ, Takeuchi ES (2012) Batteries used to power implantable biomedical devices. Electrochim Acta 84:155–164Greatbatch W, Lee JH, Mathias W, Eldridge M, Moser JR, Schneider AA (1971) The solid-state lithium battery: a new improved chemical power source for implantable cardiac pacemaker. IEEE Trans Biomed Eng 18(5):317–324Liu Y, Dong S (2007) A biofuel cell with enhanced power output by grape juice. Electrochem Commun 9(7):1423–1427Choi S, Lee H, Ghaffari R, Hyeon T, Kim D-H (2016) Recent advances in flexible and stretchable bio-electronic devices integrated with nanomaterials. Adv Mater 28:4203–4218Zhou L, Mao J, Ren Y, Han ST, Roy VAL, Zhou Y (2018) Recent advances of flexible data storage devices based on organic nanoscale materials. Small 14(10):1703126Gwon H, Kim H-S, Lee KU, Seo D-H, Park YC, Lee Y-S, Ahn BT, Kong K (2011) Flexible energy storage devices based on graphene paper. Energy Environ Sci 4:1277–1283Pang C, Lee C, Suh K-Y (2013) Recent advances in flexible sensors for wearable and implantable devices. J Appl Pol Sci 130:1429–1441Bandodkar AJ, Wang J (2014) Non-invasive wearable electrochemical sensors: a review. Trends Biotech 32(7):363–371Bandodkar AJ, Uia W, Wang J (2015) Tatto-based wearable electrochemical devices: a review. Electroanalysis 27(3):562–572Reid RC, Minteer SD, Gale BK (2015) Contact lens biofuel cell tested in a synthetic tear solution. Biosens Bioelectron 68:142Falk M, Andoralov V, Blum Z, Sotres J, Suyatin DM, Ruzgas T, Arnebrant T, Shleev S (2012) Biofuel cells as a power source for electronic contact lenses. Biosens Bioelectron 37(1):38–45Falk M, Andoralov V, Silow M, Toscano MD, Shleev S (2013) Miniature biofuel cell as a potential power source for Glucose-sensing contact lenses. Anal Chem 85(13):6342–6348Reid R, Jones SR, Hickey DP, Minteer SD, Gale BK (2016) Modeling carbon nanotubes connectivity and surface activity in a contact lens biofuel cell. Electrochim Acta 203:30–40Blum Z, Pankratov D, Shleev S (2014) Powering electronic contact lenses: current achievements, challenges and perspective. Expert Rev Ophthalmol 9(4):269–273Xiao X, Siepenkoetter T, Conghaile PÓ, Leech D, Magner E (2018) Nanoporous gold-based biofuel cell on contact lenses. ACS Appl Mater Interfaces 10(8):7107–7116Yang X-Y, Tian G, Jiang N, Su B-L (2012) Immobilization technology: a sustainable solution for biofuel cell design. Ener Environ Sci 5:5540–5563Mano N (2019) Engineering glucose oxidase for bioelectrochemical applications. Bioelectrochemistry 128:218–240Mate DM, Gonzalez-Perez D, Falk M, Kittl R, Pita M, De Lacey LA, Ludwig R, Shleev S, Alcalde M (2013) Blood tolerant caccase by directed evolution. Chem Biol 20:223–231Zhang L, Carucci C, Reculusa S, Goudeau B, Lefrançois P, Gounel S, Mano N, Kuhn A (2019) Rational design of enzyme-modified electrodes for optimized bioelectrocatalytic activity. ChemElectroChem 6(19):4980–4984Arechederra MN, Addo PK, Minteer SD (2011) Poly(neutral red) as a NAD+ reduction catalyst and a NADH oxidation catalyst: towards the development of a rechargeable biobattery. Electrochim Acta 56:1585Yang Y, Wang ZL (2015) Hybrid energy cells for simultaneously harvesting multi-types of energies. NanoEnergy 14:245–256Hansen BJ, Liu Y, Yang R, Wang ZL (2010) Hybrid nanogenerator for concurrently harvesting biomechanical and biochemical energy. ACS Nano 4:3647Song K, Han JH,

    Kualitas Hidup Pasien Diabetes Melitus Tipe 2 di Puskesmas Se Kota Kupang

    Full text link
    Diabetes Mellitus is well known as a chronic disease which can lead to a decrease in quality of life in all domains. The study aims to explore the diabetic type 2 patient\u27s quality of life and find out the factors affecting in type 2 diabetic mellitus patients. The cross-sectional study design is used that included 65 patient with type 2 diabetes mellitus, in 11 public health centers of Kupang City. Data were collected by using Short Form Survey (SF-36) that assessed 8-scale health profile. Independent sample t-test is used to analyze the correlation between the factors affecting and the quality of life. the study showed that the QoL of DM patients decreased in all 8- health profile including physical functioning, social functioning, mental health, general health, pain, change in the role due to physical problems and emotional problems. The Study also showed there was a relationship between gender, duration of suffering from Diabetes mellitus, and complications to the quality of life. Male perceived a better quality of life than female
    corecore