273 research outputs found

    Socio-cultural influences on the behaviour of South Asian women with diabetes in pregnancy: qualitative study using a multi-level theoretical approach

    Get PDF
    BACKGROUND: Diabetes in pregnancy is common in South Asians, especially those from low-income backgrounds, and leads to short-term morbidity and longer-term metabolic programming in mother and offspring. We sought to understand the multiple influences on behaviour (hence risks to metabolic health) of South Asian mothers and their unborn child, theorise how these influences interact and build over time, and inform the design of culturally congruent, multi-level interventions. METHODS: Our sample for this qualitative study was 45 women of Bangladeshi, Indian, Sri Lankan, or Pakistani origin aged 21-45 years with a history of diabetes in pregnancy, recruited from diabetes and antenatal services in two deprived London boroughs. Overall, 17 women shared their experiences of diabetes, pregnancy, and health services in group discussions and 28 women gave individual narrative interviews, facilitated by multilingual researchers, audiotaped, translated, and transcribed. Data were analysed using the constant comparative method, drawing on sociological and narrative theories. RESULTS: Key storylines (over-arching narratives) recurred across all ethnic groups studied. Short-term storylines depicted the experience of diabetic pregnancy as stressful, difficult to control, and associated with negative symptoms, especially tiredness. Taking exercise and restricting diet often worsened these symptoms and conflicted with advice from relatives and peers. Many women believed that exercise in pregnancy would damage the fetus and drain the mother's strength, and that eating would be strength-giving for mother and fetus. These short-term storylines were nested within medium-term storylines about family life, especially the cultural, practical, and material constraints of the traditional South Asian wife and mother role and past experiences of illness and healthcare, and within longer-term storylines about genetic, cultural, and material heritage - including migration, acculturation, and family memories of food insecurity. While peer advice was familiar, meaningful, and morally resonant, health education advice from clinicians was usually unfamiliar and devoid of cultural meaning. CONCLUSIONS: 'Behaviour change' interventions aimed at preventing and managing diabetes in South Asian women before and during pregnancy are likely to be ineffective if delivered in a socio-cultural vacuum. Individual education should be supplemented with community-level interventions to address the socio-material constraints and cultural frames within which behavioural 'choices' are made

    The association of APE1 −656T > G and 1349 T > G polymorphisms and cancer risk: a meta-analysis based on 37 case-control studies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>APE1 (apurinic/apyrimidinic endonuclease 1) is an important DNA repair protein in the base excision repair pathway. Polymorphisms in <it>APE1 </it>have been implicated in susceptibility to cancer; however, results from the published studies remained inconclusive. The objective of this study was to conduct a meta-analysis investigating the association between polymorphisms in <it>APE1 </it>and the risk for cancer.</p> <p>Methods</p> <p>The PubMed and Embase databases were searched for case-control studies published up to June, 2011 that investigated <it>APE1 </it>polymorphisms and cancer risk. Odds ratios (ORs) and 95% confidence intervals (CIs) were used to assess the strength of the associations.</p> <p>Results</p> <p>Two polymorphisms (−656 T > G, rs1760944 and 1349 T > G, rs1130409) in 37 case-control studies including 15, 544 cancer cases and 21, 109 controls were analyzed. Overall, variant genotypes (GG and TG/GG) of −656 T > G polymorphism were associated with significantly decreased cancer risk in homozygote comparison (OR = 0.81, 95%CI: 0.67-0.97), dominant model comparison (OR = 0.89, 95%CI: 0.81-0.97) and recessive model comparison (OR = 0.90, 95%CI: 0.82-0.98), whereas the 1349 T > G polymorphism had no effects on overall cancer risk. In the stratified analyses for −656 T > G polymorphism, there was a significantly decreased risk of lung cancer and among Asian populations.</p> <p>Conclusions</p> <p>Although some modest bias could not be eliminated, the meta-analysis suggests that <it>APE1 −</it>656 T > G polymorphism has a possible protective effect on cancer risk particularly among Asian populations whereas 1349 T > G polymorphism does not contribute to the development of cancer.</p

    Novel Coronin7 interactions with Cdc42 and N-WASP regulate actin organization and Golgi morphology

    Get PDF
    YesThe contribution of the actin cytoskeleton to the unique architecture of the Golgi complex is manifold. An important player in this process is Coronin7 (CRN7), a Golgi-resident protein that stabilizes F-actin assembly at the trans-Golgi network (TGN) thereby facilitating anterograde trafficking. Here, we establish that CRN7-mediated association of F-actin with the Golgi apparatus is distinctly modulated via the small Rho GTPase Cdc42 and N-WASP. We identify N-WASP as a novel interaction partner of CRN7 and demonstrate that CRN7 restricts spurious F-actin reorganizations by repressing N-WASP ‘hyperactivity’ upon constitutive Cdc42 activation. Loss of CRN7 leads to increased cellular F-actin content and causes a concomitant disruption of the Golgi structure. CRN7 harbours a Cdc42- and Rac-interactive binding (CRIB) motif in its tandem β-propellers and binds selectively to GDP-bound Cdc42N17 mutant. We speculate that CRN7 can act as a cofactor for active Cdc42 generation. Mutation of CRIB motif residues that abrogate Cdc42 binding to CRN7 also fail to rescue the cellular defects in fibroblasts derived from CRN7 KO mice. Cdc42N17 overexpression partially rescued the KO phenotypes whereas N-WASP overexpression failed to do so. We conclude that CRN7 spatiotemporally influences F-actin organization and Golgi integrity in a Cdc42- and N-WASP-dependent manner.This work was supported by SFB 670 and DFG NO 113/22. K.B. was supported by a fellowship from the NRW International Graduate School “From Embryo to Old Age: the Cell Biology and Genetics of Health and Disease” (IGSDHD), Cologne

    Obesity and male breast cancer: Provocative parallels?

    Get PDF
    While rare compared to female breast cancer the incidence of male breast cancer (MBC) has increased in the last few decades. Without comprehensive epidemiological studies, the explanation for the increased incidence of MBC can only be speculated. Nevertheless, one of the most worrying global public health issues is the exponential rise in the number of overweight and obese people, especially in the developed world. Although obesity is not considered an established risk factor for MBC, studies have shown increased incidence among obese individuals. With this observation in mind, this article highlights the correlation between the increased incidence of MBC and the current trends in obesity as a growing problem in the 21st century, including how this may impact treatment. With MBC becoming more prominent we put forward the notion that, not only is obesity a risk factor for MBC, but that increasing obesity trends are a contributing factor to its increased incidence

    Molecular Design, Functional Characterization and Structural Basis of a Protein Inhibitor Against the HIV-1 Pathogenicity Factor Nef

    Get PDF
    Increased spread of HIV-1 and rapid emergence of drug resistance warrants development of novel antiviral strategies. Nef, a critical viral pathogenicity factor that interacts with host cell factors but lacks enzymatic activity, is not targeted by current antiviral measures. Here we inhibit Nef function by simultaneously blocking several highly conserved protein interaction surfaces. This strategy, referred to as “wrapping Nef”, is based on structure-function analyses that led to the identification of four target sites: (i) SH3 domain interaction, (ii) interference with protein transport processes, (iii) CD4 binding and (iv) targeting to lipid membranes. Screening combinations of Nef-interacting domains, we developed a series of small Nef interacting proteins (NIs) composed of an SH3 domain optimized for binding to Nef, fused to a sequence motif of the CD4 cytoplasmic tail and combined with a prenylation signal for membrane association. NIs bind to Nef in the low nM affinity range, associate with Nef in human cells and specifically interfere with key biological activities of Nef. Structure determination of the Nef-inhibitor complex reveals the molecular basis for binding specificity. These results establish Nef-NI interfaces as promising leads for the development of potent Nef inhibitors

    Functional Interaction of Nuclear Domain 10 and Its Components with Cytomegalovirus after Infections: Cross-Species Host Cells versus Native Cells

    Get PDF
    Species-specificity is one of the major characteristics of cytomegaloviruses (CMVs) and is the primary reason for the lack of a mouse model for the direct infection of human CMV (HCMV). It has been determined that CMV cross-species infections are blocked at the post-entry level by intrinsic cellular defense mechanisms, but few details are known. It is important to explore how CMVs interact with the subnuclear structure of the cross-species host cell. In our present study, we discovered that nuclear domain 10 (ND10) of human cells was not disrupted by murine CMV (MCMV) and that the ND10 of mouse cells was not disrupted by HCMV, although the ND10-disrupting protein, immediate-early protein 1 (IE1), also colocalized with ND10 in cross-species infections. In addition, we found that the UL131-repaired HCMV strain AD169 (vDW215-BADrUL131) can infect mouse cells to produce immediate-early (IE) and early (E) proteins but that neither DNA replication nor viral particles were detectable in mouse cells. Unrepaired AD169 can express IE1 only in mouse cells. In both HCMV-infected mouse cells and MCMV-infected human cells, the knocking-down of ND10 components (PML, Daxx, and SP100) resulted in significantly increased viral-protein production. Our observations provide evidence to support our hypothesis that ND10 and ND10 components might be important defensive factors against the CMV cross-species infection

    Regulation of PERK Signaling and Leukemic Cell Survival by a Novel Cytosolic Isoform of the UPR Regulator GRP78/BiP

    Get PDF
    The unfolded protein response (UPR) is an evolutionarily conserved mechanism to allow cells to adapt to stress targeting the endoplasmic reticulum (ER). Induction of ER chaperone GRP78/BiP increases protein folding capacity; as such it represents a major survival arm of UPR. Considering the central importance of the UPR in regulating cell survival and death, evidence is emerging that cells evolve feedback regulatory pathways to modulate the key UPR executors, however, the precise mechanisms remain to be elucidated. Here, we report the fortuitous discovery of GRP78va, a novel isoform of GRP78 generated by alternative splicing (retention of intron 1) and alternative translation initiation. Bioinformatic and biochemical analyses revealed that expression of GRP78va is enhanced by ER stress and is notably elevated in human leukemic cells and leukemia patients. In contrast to the canonical GRP78 which is primarily an ER lumenal protein, GRP78va is devoid of the ER signaling peptide and is cytosolic. Through specific knockdown of endogenous GRP78va by siRNA without affecting canonical GRP78, we showed that GRP78va promotes cell survival under ER stress. We further demonstrated that GRP78va has the ability to regulate PERK signaling and that GRP78va is able to interact with and antagonize PERK inhibitor P58IPK. Our study describes the discovery of GRP78va, a novel cytosolic isoform of GRP78/BiP, and the first characterization of the modulation of UPR signaling via alternative splicing of nuclear pre-mRNA. Our study further reveals a novel survival mechanism in leukemic cells and other cell types where GRP78va is expressed

    Growth factor concentrations and their placental mRNA expression are modulated in gestational diabetes mellitus: possible interactions with macrosomia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Gestational diabetes mellitus (GDM) is a form of diabetes that occurs during pregnancy. GDM is a well known risk factor for foetal overgrowth, termed macrosomia which is influenced by maternal hypergycemia and endocrine status through placental circulation. The study was undertaken to investigate the implication of growth factors and their receptors in GDM and macrosomia, and to discuss the role of the materno-foeto-placental axis in the <it>in-utero </it>regulation of foetal growth.</p> <p>Methods</p> <p>30 women with GDM and their 30 macrosomic babies (4.75 ± 0.15 kg), and 30 healthy age-matched pregnant women and their 30 newborns (3.50 ± 0.10 kg) were recruited in the present study. Serum concentrations of GH and growth factors, <it>i.e</it>., IGF-I, IGF-BP3, FGF-2, EGF and PDGF-B were determined by ELISA. The expression of mRNA encoding for GH, IGF-I, IGF-BP3, FGF-2, PDGF-B and EGF, and their receptors, <it>i.e</it>., GHR, IGF-IR, FGF-2R, EGFR and PDGFR-β were quantified by using RT-qPCR.</p> <p>Results</p> <p>The serum concentrations of IGF-I, IGF-BP3, EGF, FGF-2 and PDGF-B were higher in GDM women and their macrosomic babies as compared to their respective controls. The placental mRNA expression of the growth factors was either upregulated (FGF-2 or PDGF-B) or remained unaltered (IGF-I and EGF) in the placenta of GDM women. The mRNA expression of three growth factor receptors, <it>i.e</it>., IGF-IR, EGFR and PDGFR-β, was upregulated in the placenta of GDM women. Interestingly, serum concentrations of GH were downregulated in the GDM women and their macrosomic offspring. Besides, the expression of mRNAs encoding for GHR was higher, but that encoding for GH was lower, in the placenta of GDM women than control women.</p> <p>Conclusions</p> <p>Our results demonstrate that growth factors might be implicated in GDM and, in part, in the pathology of macrosomia via materno-foeto-placental axis.</p

    Sex Bias in Pathogenesis of Autoimmune Neuroinflammation: Relevance for Dimethyl Fumarate Immunomodulatory/Anti-oxidant Action

    Get PDF
    In the present study, upon showing sexual dimorphism in dimethyl fumarate (DMF) efficacy to moderate the clinical severity of experimental autoimmune encephalomyelitis (EAE) in Dark Agouti rats, cellular and molecular substrate of this dimorphism was explored. In rats of both sexes, DMF administration from the day of immunization attenuated EAE severity, but this effect was more prominent in males leading to loss of the sexual dimorphism observed in vehicle-administered controls. Consistently, in male rats, DMF was more efficient in diminishing the number of CD4+ T lymphocytes infiltrating spinal cord (SC) and their reactivation, the number of IL-17+ T lymphocytes and particularly cellularity of their highly pathogenic IFN-gamma+GM-CSF+IL-17+ subset. This was linked with changes in SC CD11b+CD45+TCR alpha beta- microglia/proinflammatory monocyte progeny, substantiated in a more prominent increase in the frequency of anti-inflammatory phygocyting CD163+ cells and the cells expressing high surface levels of immunoregulatory CD83 molecule (associated with apoptotic cells phagocytosis and implicated in downregulation of CD4+ T lymphocyte reactivation) among CD11b+CD45+TCR alpha beta- cells in male rat SC. These changes were associated with greater increase in the nuclear factor (erythroid-derived 2)-like 2 expression in male rats administered with DMF. In accordance with the previous findings, DMF diminished reactive nitrogen and oxygen species generation and consistently, SC level of advanced oxidation protein products, to the greater extent in male rats. Overall, our study indicates sex-specificity in the sensitivity of DMF cellular and molecular targets and encourages sex-based clinical research to define significance of sex for action of therapeutic agents moderating autoimmune neuroinflammation-/oxidative stress-related nervous tissue damage

    A Multigenerational View of Inequality

    Get PDF
    The study of intergenerational mobility and most population research are governed by a two-generation (parent-to-offspring) view of intergenerational influence, to the neglect of the effects of grandparents and other ancestors and nonresident contemporary kin. While appropriate for some populations in some periods, this perspective may omit important sources of intergenerational continuity of family-based social inequality. Social institutions, which transcend individual lives, help support multigenerational influence, particularly at the extreme top and bottom of the social hierarchy, but to some extent in the middle as well. Multigenerational influence also works through demographic processes because families influence subsequent generations through differential fertility and survival, migration, and marriage patterns, as well as through direct transmission of socioeconomic rewards, statuses, and positions. Future research should attend more closely to multigenerational effects; to the tandem nature of demographic and socioeconomic reproduction; and to data, measures, and models that transcend coresident nuclear families
    corecore