197 research outputs found
Pathology of infantile cortical hyperostosis (Caffey's disease). Report of a case.
Late recurrence or a delayed form of Caffey's disease is an exceedingly rare condition of unknown cause. A 3 1/2-year-old boy is presented with delayed Caffey's disease showing unilateral involvement of maxilla and zygoma
Osteoid osteoma of the femur in a 7-month-old infant treated with radiofrequency ablation
Osteoid osteoma occurs most commonly in children, adolescents, and young adults between the ages of 5 and 30 years. In the preschool age group, it is quite uncommon, accounting for only 3–8% of all osteoid osteoma cases. We report a case of osteoid osteoma in a 7-month-old infant, who presented with decreased use of the right lower extremity due to pain. Magnetic resonance imaging (MRI) showed an atypical appearance. A biopsy of the lesion, with histopathological examination, confirmed the diagnosis of osteoid osteoma. Radiofrequency ablation (RFA) of the nidus under computed tomography (CT) guidance was performed. The patient developed a recurrence after 3 months, which was treated with a second RFA. On subsequent follow-up, the infant did not show signs of pain after 1 month. In summary, this case report shows that osteoid osteoma can present in early infancy and can be successfully treated with RFA at this age, however, recurrence after the procedure can occur and close follow-up is recommended
Invasion is a community affair: clandestine followers in the bacterial community associated to green algae, Caulerpa racemosa, track the invasion source
Biological invasions rank amongst the most deleterious components of global change inducing alterations from genes to ecosystems. The genetic characteristics of introduced pools of individuals greatly influence the capacity of introduced species to establish and expand. The recently demonstrated heritability of microbial communities associated to individual genotypes of primary producers makes them a potentially essential element of the evolution and adaptability of their hosts. Here, we characterized the bacterial communities associated to native and non-native populations of the marine green macroalga Caulerpa racemosa through pyrosequencing, and explored their potential
role on the strikingly invasive trajectory of their host in the Mediterranean. The similarity of endophytic bacterial communities from the native Australian range and several Mediterranean locations confirmed the origin of invasion and revealed distinct communities associated to a second Mediterranean variety of C. racemosa long reported in the Mediterranean. Comparative analysis of these two groups demonstrated the stability of the composition of bacterial communities through the successive steps of introduction and invasion and suggested the vertical transmission of some major bacterial OTUs. Indirect inferences on the taxonomic identity and associated metabolism of bacterial lineages showed a striking consistency with sediment upheaval conditions associated to the expansion of their invasive host and to the decline of native species. These results demonstrate that bacterial communities can be an
effective tracer of the origin of invasion and support their potential role in their eukaryotic host’s adaptation to new
environments. They put forward the critical need to consider the 'meta-organism' encompassing both the host and associated micro-organisms, to unravel the origins, causes and mechanisms underlying biological invasions
The Mechanism of Release of P-TEFb and HEXIM1 from the 7SK snRNP by Viral and Cellular Activators Includes a Conformational Change in 7SK
The positive transcription elongation factor, P-TEFb, is required for the production of mRNAs, however the majority of the factor is present in the 7SK snRNP where it is inactivated by HEXIM1. Expression of HIV-1 Tat leads to release of P-TEFb and HEXIM1 from the 7SK snRNP in vivo, but the release mechanisms are unclear.We developed an in vitro P-TEFb release assay in which the 7SK snRNP immunoprecipitated from HeLa cell lysates using antibodies to LARP7 was incubated with potential release factors. We found that P-TEFb was directly released from the 7SK snRNP by HIV-1 Tat or the P-TEFb binding region of the cellular activator Brd4. Glycerol gradient sedimentation analysis was used to demonstrate that the same Brd4 protein transfected into HeLa cells caused the release of P-TEFb and HEXIM1 from the 7SK snRNP in vivo. Although HEXIM1 binds tightly to 7SK RNA in vitro, release of P-TEFb from the 7SK snRNP is accompanied by the loss of HEXIM1. Using a chemical modification method, we determined that concomitant with the release of HEXIM1, 7SK underwent a major conformational change that blocks re-association of HEXIM1.Given that promoter proximally paused polymerases are present on most human genes, understanding how activators recruit P-TEFb to those genes is critical. Our findings reveal that the two tested activators can extract P-TEFb from the 7SK snRNP. Importantly, we found that after P-TEFb is extracted a dramatic conformational change occurred in 7SK concomitant with the ejection of HEXIM1. Based on our findings, we hypothesize that reincorporation of HEXIM1 into the 7SK snRNP is likely the regulated step of reassembly of the 7SK snRNP containing P-TEFb
Quality of life data as prognostic indicators of survival in cancer patients: an overview of the literature from 1982 to 2008
<p>Abstract</p> <p>Background</p> <p>Health-related quality of life and survival are two important outcome measures in cancer research and practice. The aim of this paper is to examine the relationship between quality of life data and survival time in cancer patients.</p> <p>Methods</p> <p>A review was undertaken of all the full publications in the English language biomedical journals between 1982 and 2008. The search was limited to cancer, and included the combination of keywords 'quality of life', 'patient reported-outcomes' 'prognostic', 'predictor', 'predictive' and 'survival' that appeared in the titles of the publications. In addition, each study was examined to ensure that it used multivariate analysis. Purely psychological studies were excluded. A manual search was also performed to include additional papers of potential interest.</p> <p>Results</p> <p>A total of 451 citations were identified in this rapid and systematic review of the literature. Of these, 104 citations on the relationship between quality of life and survival were found to be relevant and were further examined. The findings are summarized under different headings: heterogeneous samples of cancer patients, lung cancer, breast cancer, gastro-oesophageal cancers, colorectal cancer, head and neck cancer, melanoma and other cancers. With few exceptions, the findings showed that quality of life data or some aspects of quality of life measures were significant independent predictors of survival duration. Global quality of life, functioning domains and symptom scores - such as appetite loss, fatigue and pain - were the most important indicators, individually or in combination, for predicting survival times in cancer patients after adjusting for one or more demographic and known clinical prognostic factors.</p> <p>Conclusion</p> <p>This review provides evidence for a positive relationship between quality of life data or some quality of life measures and the survival duration of cancer patients. Pre-treatment (baseline) quality of life data appeared to provide the most reliable information for helping clinicians to establish prognostic criteria for treating their cancer patients. It is recommended that future studies should use valid instruments, apply sound methodological approaches and adequate multivariate statistical analyses adjusted for socio-demographic characteristics and known clinical prognostic factors with a satisfactory validation strategy. This strategy is likely to yield more accurate and specific quality of life-related prognostic variables for specific cancers.</p
Alteration of EGFR Spatiotemporal Dynamics Suppresses Signal Transduction
The epidermal growth factor receptor (EGFR), which regulates cell growth and survival, is integral to colon tumorigenesis. Lipid rafts play a role in regulating EGFR signaling, and docosahexaenoic acid (DHA) is known to perturb membrane domain organization through changes in lipid rafts. Therefore, we investigated the mechanistic link between EGFR function and DHA. Membrane incorporation of DHA into immortalized colonocytes altered the lateral organization of EGFR. DHA additionally increased EGFR phosphorylation but paradoxically suppressed downstream signaling. Assessment of the EGFR-Ras-ERK1/2 signaling cascade identified Ras GTP binding as the locus of the DHA-induced disruption of signal transduction. DHA also antagonized EGFR signaling capacity by increasing receptor internalization and degradation. DHA suppressed cell proliferation in an EGFR-dependent manner, but cell proliferation could be partially rescued by expression of constitutively active Ras. Feeding chronically-inflamed, carcinogen-injected C57BL/6 mice a fish oil containing diet enriched in DHA recapitulated the effects on the EGFR signaling axis observed in cell culture and additionally suppressed tumor formation. We conclude that DHA-induced alteration in both the lateral and subcellular localization of EGFR culminates in the suppression of EGFR downstream signal transduction, which has implications for the molecular basis of colon cancer prevention by DHA
The elegans of spindle assembly
The Caenorhabditis elegans one-cell embryo is a powerful system in which to study microtubule organization because this large cell assembles both meiotic and mitotic spindles within the same cytoplasm over the course of 1 h in a stereotypical manner. The fertilized oocyte assembles two consecutive acentrosomal meiotic spindles that function to reduce the replicated maternal diploid set of chromosomes to a single-copy haploid set. The resulting maternal DNA then unites with the paternal DNA to form a zygotic diploid complement, around which a centrosome-based mitotic spindle forms. The early C. elegans embryo is amenable to live-cell imaging and electron tomography, permitting a detailed structural comparison of the meiotic and mitotic modes of spindle assembly
Remote detection of invasive alien species
The spread of invasive alien species (IAS) is recognized as the most severe threat to biodiversity outside of climate change and anthropogenic habitat destruction. IAS negatively impact ecosystems, local economies, and residents. They are especially problematic because once established, they give rise to positive feedbacks, increasing the likelihood of further invasions and spread. The integration of remote sensing (RS) to the study of invasion, in addition to contributing to our understanding of invasion processes and impacts to biodiversity, has enabled managers to monitor invasions and predict the spread of IAS, thus supporting biodiversity conservation and management action. This chapter focuses on RS capabilities to detect and monitor invasive plant species across terrestrial, riparian, aquatic, and human-modified ecosystems. All of these environments have unique species assemblages and their own optimal methodology for effective detection and mapping, which we discuss in detail
Non-randomness of the anatomical distribution of tumors
Background: Why does a tumor start where it does within an organ? Location is traditionally viewed as a random event, yet the statistics of the location of tumors argues against this being a random occurrence. There are numerous examples including that of breast cancer. More than half of invasive breast cancer tumors start in the upper outer quadrant of the breast near the armpit, even though it is estimated that only 35 to 40% of breast tissue is in this quadrant. This suggests that there is an unknown microenvironmental factor that significantly increases the risk of cancer in a spatial manner and that is not solely due to genes or toxins. We hypothesize that tumors are more prone to form in healthy tissue at microvascular ‘hot spots’ where there is a high local concentration of microvessels providing an increased blood flow that ensures an ample supply of oxygen, nutrients, and receptors for growth factors that promote the generation of new blood vessels. Results: To show the plausibility of our hypothesis, we calculated the fractional probability that there is at least one microvascular hot spot in each region of the breast assuming a Poisson distribution of microvessels in two-dimensional cross sections of breast tissue. We modulated the microvessel density in various regions of the breast according to the total hemoglobin concentration measured by near infrared diffuse optical spectroscopy in different regions of the breast. Defining a hot spot to be a circle of radius 200 μm with at least 5 microvessels, and using a previously measured mean microvessel density of 1 microvessel/mm2, we find good agreement of the fractional probability of at least one hot spot in different regions of the breast with the observed invasive tumor occurrence. However, there is no reason to believe that the microvascular distribution obeys a Poisson distribution. Conclusions: The spatial location of a tumor in an organ is not entirely random, indicating an unknown risk factor. Much work needs to be done to understand why a tumor occurs where it does. Electronic supplementary material The online version of this article (10.1186/s41236-017-0006-7) contains supplementary material, which is available to authorized users
- …