2,682 research outputs found
A Candidate Sub-Parsec Supermassive Binary Black Hole System
We identify SDSS J153636.22+044127.0, a QSO discovered in the Sloan Digital
Sky Survey, as a promising candidate for a binary black hole system. This QSO
has two broad-line emission systems separated by 3500 km/sec. The redder system
at z=0.3889 also has a typical set of narrow forbidden lines. The bluer system
(z=0.3727) shows only broad Balmer lines and UV Fe II emission, making it
highly unusual in its lack of narrow lines. A third system, which includes only
unresolved absorption lines, is seen at a redshift, z=0.3878, intermediate
between the two emission-line systems. While the observational signatures of
binary nuclear black holes remain unclear, J1536+0441 is unique among all QSOs
known in having two broad-line regions, indicative of two separate black holes
presently accreting gas. The interpretation of this as a bound binary system of
two black holes having masses of 10^8.9 and 10^7.3 solar masses, yields a
separation of ~ 0.1 parsec and an orbital period of ~100 years. The separation
implies that the two black holes are orbiting within a single narrow-line
region, consistent with the characteristics of the spectrum. This object was
identified as an extreme outlier of a Karhunen-Loeve Transform of 17,500 z <
0.7 QSO spectra from the SDSS. The probability of the spectrum resulting from a
chance superposition of two QSOs with similar redshifts is estimated at
2X10^-7, leading to the expectation of 0.003 such objects in the sample
studied; however, even in this case, the spectrum of the lower redshift QSO
remains highly unusual.Comment: 8 pages, 2 figures, Nature in pres
The spectral variability of FSRQs
The optical variability of 29 flat spectrum radio quasars in SDSS Stripe 82
region are investigated by using DR7 released multi-epoch data. All FSRQs show
variations with overall amplitude ranging from 0.24 mag to 3.46 mag in
different sources. About half of FSRQs show a bluer-when-brighter trend, which
is commonly observed for blazars. However, only one source shows a
redder-when-brighter trend, which implies it is rare in FSRQs. In this source,
the thermal emission may likely be responsible for the spectral behavior.Comment: 4 pages, 1 figure, to be published in Journal of Astrophysics and
Astronomy, as a proceeding paper of the conference "Multiwavelength
Variability of Blazars", Guangzhou, China, September 22-24, 201
The role of Comprehension in Requirements and Implications for Use Case Descriptions
Within requirements engineering it is generally accepted that in writing specifications (or indeed any requirements phase document), one attempts to produce an artefact which will be simple to comprehend for the user. That is, whether the document is intended for customers to validate requirements, or engineers to understand what the design must deliver, comprehension is an important goal for the author. Indeed, advice on producing ‘readable’ or ‘understandable’ documents is often included in courses on requirements engineering. However, few researchers, particularly within the software engineering domain, have attempted either to define or to understand the nature of comprehension and it’s implications for guidance on the production of quality requirements.
Therefore, this paper examines thoroughly the nature of textual comprehension, drawing heavily from research in discourse process, and suggests some implications for requirements (and other) software documentation. In essence, we find that the guidance on writing requirements, often prevalent within software engineering, may be based upon assumptions which are an oversimplification of the nature of comprehension. Hence, the paper examines guidelines which have been proposed, in this case for use case descriptions, and the extent to which they agree with discourse process theory; before suggesting refinements to the guidelines which attempt to utilise lessons learned from our richer understanding of the underlying discourse process theory. For example, we suggest subtly different sets of writing guidelines for the different tasks of requirements, specification and design
Genome Sequence of Corynebacterium pseudotuberculosis MB20 bv. equi Isolated from a Pectoral Abscess of an Oldenburg Horse in California.
The genome of Corynebacterium pseudotuberculosis MB20 bv. equi was sequenced using the Ion Personal Genome Machine (PGM) platform, and showed a size of 2,363,089 bp, with 2,365 coding sequences and a GC content of 52.1%. These results will serve as a basis for further studies on the pathogenicity of C. pseudotuberculosis bv. equi
Algebraic Comparison of Partial Lists in Bioinformatics
The outcome of a functional genomics pipeline is usually a partial list of
genomic features, ranked by their relevance in modelling biological phenotype
in terms of a classification or regression model. Due to resampling protocols
or just within a meta-analysis comparison, instead of one list it is often the
case that sets of alternative feature lists (possibly of different lengths) are
obtained. Here we introduce a method, based on the algebraic theory of
symmetric groups, for studying the variability between lists ("list stability")
in the case of lists of unequal length. We provide algorithms evaluating
stability for lists embedded in the full feature set or just limited to the
features occurring in the partial lists. The method is demonstrated first on
synthetic data in a gene filtering task and then for finding gene profiles on a
recent prostate cancer dataset
Cell cycle progression or translation control is not essential for vesicular stomatitis virus oncolysis of hepatocellular carcinoma.
The intrinsic oncolytic specificity of vesicular stomatitis virus (VSV) is currently being exploited to develop alternative therapeutic strategies for hepatocellular carcinoma (HCC). Identifying key regulators in diverse transduction pathways that define VSV oncolysis in cancer cells represents a fundamental prerequisite to engineering more effective oncolytic viral vectors and adjusting combination therapies. After having identified defects in the signalling cascade of type I interferon induction, responsible for attenuated antiviral responses in human HCC cell lines, we have now investigated the role of cell proliferation and translation initiation. Cell cycle progression and translation initiation factors eIF4E and eIF2Bepsilon have been recently identified as key regulators of VSV permissiveness in T-lymphocytes and immortalized mouse embryonic fibroblasts, respectively. Here, we show that in HCC, decrease of cell proliferation by cell cycle inhibitors or siRNA-mediated reduction of G(1) cyclin-dependent kinase activities (CDK4) or cyclin D1 protein expression, do not significantly alter viral growth. Additionally, we demonstrate that translation initiation factors eIF4E and eIF2Bepsilon are negligible in sustaining VSV replication in HCC. Taken together, these results indicate that cellular proliferation and the initiation phase of cellular protein synthesis are not essential for successful VSV oncolysis of HCC. Moreover, our observations indicate the importance of cell-type specificity for VSV oncolysis, an important aspect to be considered in virotherapy applications in the future
Formation of Supermassive Black Holes
Evidence shows that massive black holes reside in most local galaxies.
Studies have also established a number of relations between the MBH mass and
properties of the host galaxy such as bulge mass and velocity dispersion. These
results suggest that central MBHs, while much less massive than the host (~
0.1%), are linked to the evolution of galactic structure. In hierarchical
cosmologies, a single big galaxy today can be traced back to the stage when it
was split up in hundreds of smaller components. Did MBH seeds form with the
same efficiency in small proto-galaxies, or did their formation had to await
the buildup of substantial galaxies with deeper potential wells? I briefly
review here some of the physical processes that are conducive to the evolution
of the massive black hole population. I will discuss black hole formation
processes for `seed' black holes that are likely to place at early cosmic
epochs, and possible observational tests of these scenarios.Comment: To appear in The Astronomy and Astrophysics Review. The final
publication is available at http://www.springerlink.co
TRY plant trait database - enhanced coverage and open access
Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives
X-Ray Spectroscopy of Stars
(abridged) Non-degenerate stars of essentially all spectral classes are soft
X-ray sources. Low-mass stars on the cooler part of the main sequence and their
pre-main sequence predecessors define the dominant stellar population in the
galaxy by number. Their X-ray spectra are reminiscent, in the broadest sense,
of X-ray spectra from the solar corona. X-ray emission from cool stars is
indeed ascribed to magnetically trapped hot gas analogous to the solar coronal
plasma. Coronal structure, its thermal stratification and geometric extent can
be interpreted based on various spectral diagnostics. New features have been
identified in pre-main sequence stars; some of these may be related to
accretion shocks on the stellar surface, fluorescence on circumstellar disks
due to X-ray irradiation, or shock heating in stellar outflows. Massive, hot
stars clearly dominate the interaction with the galactic interstellar medium:
they are the main sources of ionizing radiation, mechanical energy and chemical
enrichment in galaxies. High-energy emission permits to probe some of the most
important processes at work in these stars, and put constraints on their most
peculiar feature: the stellar wind. Here, we review recent advances in our
understanding of cool and hot stars through the study of X-ray spectra, in
particular high-resolution spectra now available from XMM-Newton and Chandra.
We address issues related to coronal structure, flares, the composition of
coronal plasma, X-ray production in accretion streams and outflows, X-rays from
single OB-type stars, massive binaries, magnetic hot objects and evolved WR
stars.Comment: accepted for Astron. Astrophys. Rev., 98 journal pages, 30 figures
(partly multiple); some corrections made after proof stag
Contribution of sea-ice loss to Arctic amplification is regulated by Pacific Ocean decadal variability
The pace of Arctic warming is about double that at lower latitudes – a robust phenomenon known as Arctic amplification (AA)1. Many diverse climate processes and feedbacks cause AA2-7, including positive feedbacks associated with diminished sea ice6,7. However, the precise contribution of sea-ice loss to AA remains uncertain7,8. Through analyses of both observations and model simulations, we show that the contribution of sea-ice loss to wintertime AA appears dependent on the phase of the Pacific Decadal Oscillation (PDO). Our results suggest that for the same pattern and amount of sea-ice loss, consequent Arctic warming is larger during the negative PDO phase, relative to the positive phase, leading to larger reductions in the poleward gradient of tropospheric thickness and to more pronounced reductions in the upper-level westerlies. Given the oscillatory nature of the PDO, this relationship has the potential to increase skill in decadal-scale predictability of Arctic and sub-Arctic climate. Our results indicate that Arctic warming in response to the ongoing long-term sea-ice decline9,10 is greater (reduced) during periods of negative (positive) PDO phase. We speculate that the observed recent shift to the positive PDO phase, if maintained and all other factors being equal, could act to temporarily reduce the pace of wintertime Arctic warming in the near future.J.A.S. was funded by a UK Natural Environment Research Council (NERC) grants NE/J019585/1 and NE/M006123/1. J.A.F. was supported by an NSF/ARCSS grant (1304097) and NASA grant (NNX14AH896). The model simulations were performed on the ARCHER UK National Supercomputing Service. We thank the NOAA ESRL and Met Office Hadley Centre for provision of observational and reanalysis data sets. We also thank D. Ackerley for helping to diagnose the cause of model crashes, C. Deser for commenting on the manuscript prior to submission, and two anonymous reviewers for constructive criticism
- …
