3,351 research outputs found

    Neural Network Modelling of Track Profile in Cold Spray Additive Manufacturing.

    Get PDF
    Cold spray additive manufacturing is an emerging technology that offers the ability to deposit oxygen-sensitive materials and to manufacture large components in the solid state. For further development of the technology, the geometric control of cold sprayed components is fundamental but not yet fully matured. This study presents a neural network predictive modelling of a single-track profile in cold spray additive manufacturing to address the problem. In contrast to previous studies focusing only on key geometric feature predictions, the neural network model was employed to demonstrate its capability of predicting complete track profiles at both normal and off-normal spray angles, resulting in a mean absolute error of 8.3%. We also compared the track profile modelling results against the previously proposed Gaussian model and showed that the neural network model provided comparable predictive accuracy, even outperforming in the predictions at cold spray profile edges. The results indicate that a neural network modelling approach is well suited to cold spray profile prediction and may be used to improve geometric control during additive manufacturing with an appropriate process planning algorithm.This research was funded by CSIRO’s Active Integrated Matter Future Science Platform (AIM FSP)under the testbed number: TB10_WB04

    Data-Efficient Neural Network for Track Profile Modelling in Cold Spray Additive Manufacturing

    Get PDF
    Cold spray is emerging as an additive manufacturing technique, particularly advantageous when high production rate and large build sizes are in demand. To further accelerate technology’s industrial maturity, the problem of geometric control must be improved, and a neural network model has emerged to predict additively manufactured geometry. However, limited data on the effect of deposition conditions on geometry growth is often problematic. Therefore, this study presents data-efficient neural network modelling of a single-track profile in cold spray additive manufacturing. Two modelling techniques harnessing prior knowledge or existing model were proposed, and both were found to be effective in achieving the data-efficient development of a neural network model. We also showed that the proposed data-efficient neural network model provided better predictive performance than the previously proposed Gaussian function model and purely data-driven neural network. The results indicate that a neural network model can outperform a widely used mathematical model with data-efficient modelling techniques and be better suited to improving geometric control in cold spray additive manufacturing

    Establishing the precise evolutionary history of a gene improves prediction of disease-causing missense mutations

    Get PDF
    PURPOSE: Predicting the phenotypic effects of mutations has become an important application in clinical genetic diagnostics. Computational tools evaluate the behavior of the variant over evolutionary time and assume that variations seen during the course of evolution are probably benign in humans. However, current tools do not take into account orthologous/paralogous relationships. Paralogs have dramatically different roles in Mendelian diseases. For example, whereas inactivating mutations in the NPC1 gene cause the neurodegenerative disorder Niemann-Pick C, inactivating mutations in its paralog NPC1L1 are not disease-causing and, moreover, are implicated in protection from coronary heart disease. METHODS: We identified major events in NPC1 evolution and revealed and compared orthologs and paralogs of the human NPC1 gene through phylogenetic and protein sequence analyses. We predicted whether an amino acid substitution affects protein function by reducing the organism’s fitness. RESULTS: Removing the paralogs and distant homologs improved the overall performance of categorizing disease-causing and benign amino acid substitutions. CONCLUSION: The results show that a thorough evolutionary analysis followed by identification of orthologs improves the accuracy in predicting disease-causing missense mutations. We anticipate that this approach will be used as a reference in the interpretation of variants in other genetic diseases as well. Genet Med 18 10, 1029–1036

    The Effects of Twitter Sentiment on Stock Price Returns

    Get PDF
    Social media are increasingly reflecting and influencing behavior of other complex systems. In this paper we investigate the relations between a well-know micro-blogging platform Twitter and financial markets. In particular, we consider, in a period of 15 months, the Twitter volume and sentiment about the 30 stock companies that form the Dow Jones Industrial Average (DJIA) index. We find a relatively low Pearson correlation and Granger causality between the corresponding time series over the entire time period. However, we find a significant dependence between the Twitter sentiment and abnormal returns during the peaks of Twitter volume. This is valid not only for the expected Twitter volume peaks (e.g., quarterly announcements), but also for peaks corresponding to less obvious events. We formalize the procedure by adapting the well-known "event study" from economics and finance to the analysis of Twitter data. The procedure allows to automatically identify events as Twitter volume peaks, to compute the prevailing sentiment (positive or negative) expressed in tweets at these peaks, and finally to apply the "event study" methodology to relate them to stock returns. We show that sentiment polarity of Twitter peaks implies the direction of cumulative abnormal returns. The amount of cumulative abnormal returns is relatively low (about 1-2%), but the dependence is statistically significant for several days after the events

    Left Displacement of the Abomasum in 4 Beef Calves

    Get PDF
    Citation: Oman, R. E., Streeter, R. N., Reppert, E. J., & Chako, C. Z. (2016). Left Displacement of the Abomasum in 4 Beef Calves. Journal of Veterinary Internal Medicine, 30(4), 1376-1380. doi:10.1111/jvim.14353BackgroundLittle is known about the occurrence rate, underlying etiology or treatment of left displacement of the abomasum in beef calves. ObjectiveDescribe the clinical presentation, diagnosis and treatment of left displacement of the abomasum in 4 beef calves. AnimalsFour client-owned beef breed calves with left displaced abomasum (LDA). MethodsRetrospective case series. Hospital medical records were reviewed to identify all beef breed cattle under the age of 6 months diagnosed with LDA. ResultsFour beef calves were treated for left displacement of the abomasum. All four had a history of decreased appetite and left-sided abdominal distention. Two had recently been treated for necrotic laryngitis and one was being treated for clostridial abomasitis. Ultrasonography confirmed the abomasum to be displaced between the rumen and the left body wall in all calves. The calves were initially treated by rolling to correct the abomasal displacement. The abomasum redisplaced in 3 of 4 calves within 1 hour to 6 days; 1 calf developed a mesenteric volvulus. A right paramedian abomasopexy was performed in all cases. Three of 4 calves grew well and remained in the herd 6-18 months later; 1 calf was euthanized because of complications associated with necrotic laryngitis. Conclusions and clinical importanceLeft displacement of the abomasum should be considered as a differential diagnosis for beef calves with abdominal distention. Concurrent necrotic laryngitis can increase the risk of abomasal displacement in beef calves. Treatment should include surgical correction as rolling is not curative and might be associated with mesenteric volvulus

    Detection of structural mosaicism from targeted and whole-genome sequencing data.

    Get PDF
    Structural mosaic abnormalities are large post-zygotic mutations present in a subset of cells and have been implicated in developmental disorders and cancer. Such mutations have been conventionally assessed in clinical diagnostics using cytogenetic or microarray testing. Modern disease studies rely heavily on exome sequencing, yet an adequate method for the detection of structural mosaicism using targeted sequencing data is lacking. Here, we present a method, called MrMosaic, to detect structural mosaic abnormalities using deviations in allele fraction and read coverage from next-generation sequencing data. Whole-exome sequencing (WES) and whole-genome sequencing (WGS) simulations were used to calculate detection performance across a range of mosaic event sizes, types, clonalities, and sequencing depths. The tool was applied to 4911 patients with undiagnosed developmental disorders, and 11 events among nine patients were detected. For eight of these 11 events, mosaicism was observed in saliva but not blood, suggesting that assaying blood alone would miss a large fraction, possibly >50%, of mosaic diagnostic chromosomal rearrangements

    Similarity solutions for unsteady shear-stress-driven flow of Newtonian and power-law fluids : slender rivulets and dry patches

    Get PDF
    Unsteady flow of a thin film of a Newtonian fluid or a non-Newtonian power-law fluid with power-law index N driven by a constant shear stress applied at the free surface, on a plane inclined at an angle α to the horizontal, is considered. Unsteady similarity solutions representing flow of slender rivulets and flow around slender dry patches are obtained. Specifically, solutions are obtained for converging sessile rivulets (0 < α < π/2) and converging dry patches in a pendent film (π/2 < α < π), as well as for diverging pendent rivulets and diverging dry patches in a sessile film. These solutions predict that at any time t, the rivulet and dry patch widen or narrow according to |x|3/2, and the film thickens or thins according to |x|, where x denotes distance down the plane, and that at any station x, the rivulet and dry patch widen or narrow like |t|−1, and the film thickens or thins like |t|−1, independent of N

    Measuring co-authorship and networking-adjusted scientific impact

    Get PDF
    Appraisal of the scientific impact of researchers, teams and institutions with productivity and citation metrics has major repercussions. Funding and promotion of individuals and survival of teams and institutions depend on publications and citations. In this competitive environment, the number of authors per paper is increasing and apparently some co-authors don't satisfy authorship criteria. Listing of individual contributions is still sporadic and also open to manipulation. Metrics are needed to measure the networking intensity for a single scientist or group of scientists accounting for patterns of co-authorship. Here, I define I1 for a single scientist as the number of authors who appear in at least I1 papers of the specific scientist. For a group of scientists or institution, In is defined as the number of authors who appear in at least In papers that bear the affiliation of the group or institution. I1 depends on the number of papers authored Np. The power exponent R of the relationship between I1 and Np categorizes scientists as solitary (R>2.5), nuclear (R=2.25-2.5), networked (R=2-2.25), extensively networked (R=1.75-2) or collaborators (R<1.75). R may be used to adjust for co-authorship networking the citation impact of a scientist. In similarly provides a simple measure of the effective networking size to adjust the citation impact of groups or institutions. Empirical data are provided for single scientists and institutions for the proposed metrics. Cautious adoption of adjustments for co-authorship and networking in scientific appraisals may offer incentives for more accountable co-authorship behaviour in published articles.Comment: 25 pages, 5 figure

    Eosinophil and T Cell Markers Predict Functional Decline in COPD Patients

    Get PDF
    BACKGROUND. The major marker utilized to monitor COPD patients is forced expiratory volume in one second (FEV1). However, asingle measurement of FEV1 cannot reliably predict subsequent decline. Recent studies indicate that T lymphocytes and eosinophils are important determinants of disease stability in COPD. We therefore measured cytokine levels in the lung lavage fluid and plasma of COPD patients in order to determine if the levels of T cell or eosinophil related cytokines were predictive of the future course of the disease. METHODS. Baseline lung lavage and plasma samples were collected from COPD subjects with moderately severe airway obstruction and emphysematous changes on chest CT. The study participants were former smokers who had not had a disease exacerbation within the past six months or used steroids within the past two months. Those subjects who demonstrated stable disease over the following six months (ΔFEV1 % predicted = 4.7 ± 7.2; N = 34) were retrospectively compared with study participants who experienced a rapid decline in lung function (ΔFEV1 % predicted = -16.0 ± 6.0; N = 16) during the same time period and with normal controls (N = 11). Plasma and lung lavage cytokines were measured from clinical samples using the Luminex multiplex kit which enabled the simultaneous measurement of several T cell and eosinophil related cytokines. RESULTS AND DISCUSSION. Stable COPD participants had significantly higher plasma IL-2 levels compared to participants with rapidly progressive COPD (p = 0.04). In contrast, plasma eotaxin-1 levels were significantly lower in stable COPD subjects compared to normal controls (p < 0.03). In addition, lung lavage eotaxin-1 levels were significantly higher in rapidly progressive COPD participants compared to both normal controls (p < 0.02) and stable COPD participants (p < 0.05). CONCLUSION. These findings indicate that IL-2 and eotaxin-1 levels may be important markers of disease stability in advanced emphysema patients. Prospective studies will need to confirm whether measuring IL-2 or eotaxin-1 can identify patients at risk for rapid disease progression.National Heart, Lung, and Blood Institute (NO1-HR-96140, NO1-HR-96141-001, NO1-HR-96144, NO1-HR-96143; NO1-HR-96145; NO1-HR-96142, R01HL086936-03); The Flight Attendant Medical Research Institute; the Jo-Ann F. LeBuhn Center for Chest Diseas
    corecore