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Similarity solutions for unsteady shear-stress-driven flow of

Newtonian and power-law fluids: slender rivulets and dry patches

Y. M. YATIM,1 B. R. DUFFY2 and S. K. WILSON3

Department of Mathematics and Statistics, University of Strathclyde, Livingstone Tower,

26 Richmond Street, Glasgow G1 1XH, U.K.

Abstract. Unsteady flow of a thin film of a Newtonian fluid or a non-Newtonian power-law

fluid with power-law index N driven by a constant shear stress applied at the free surface, on a

plane inclined at an angle α to the horizontal, is considered. Unsteady similarity solutions rep-

resenting flow of slender rivulets and flow around slender dry patches are obtained. Specifically,

solutions are obtained for converging sessile rivulets (0 < α < π/2) and converging dry patches

in a pendent film (π/2 < α < π), as well as for diverging pendent rivulets and diverging dry

patches in a sessile film. These solutions predict that at any time t the rivulet and dry patch

widen or narrow according to |x|3/2 and the film thickens or thins according to |x|, where x

denotes distance down the plane, and that at any station x the rivulet and dry patch widen or

narrow like |t|−1 and the film thickens or thins like |t|−1, independent of N .

Key words: power-law fluid, thin film, rivulet, dry patch, similarity solution, unsteady flow

1 Introduction

Flow problems involving a thin film of fluid subject to pressure and/or shear-stress forces at

its free surface due to an external flow occur commonly in practice. A simple example of a

flow of this type is the motion of rainwater up the windscreen of a fast moving vehicle; more

technologically significant examples include the so-called air-knife coating process, and the icing

of aircraft wings when an aircraft passes through a cloud of supercooled water droplets.

There have been many studies of steady flows of such films. For example, King and Tuck [1],

using a model proposed by King et al. [2] and based on lubrication and thin-airfoil theories,
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considered a steady two-dimensional ridge of fluid on an inclined plane whose draining due to

gravity is resisted by the pressure and shear forces associated with an upward stream of air

flowing over its free surface. In a study of rimming flow (that is, flow on the inner surface of

a rotating circular cylinder) of a thin film subject to a constant shear stress at its free surface,

Villegas-Diaz et al. [3] showed that not only is there a steady solution akin to the well-known

solution obtained by Moffatt [4] representing a balance between gravity and shear due to the

rotation of the cylinder, but also there can be an additional solution arising because of the

surface shear. Steady shear-stress-driven rivulets have been considered by, for example, Wilson

and Duffy [5] and Sullivan et al. [6], who studied steady unidirectional flow of a symmetric

rivulet of a non-perfectly wetting fluid on a vertical plane and a perfectly wetting fluid on an

inclined plane, respectively, subject to a constant longitudinal shear stress at its free surface.

They showed that there are five possible types of cross-sectional flow pattern, and investigated

the quasi-steady stability of the rivulet; they also determined conditions under which it is

energetically favourable for the rivulet to split.

In addition to the above examples of steady flows of thin films subject to external air flow,

there have also been studies of unsteady flows of such films. For example, King et al. [2]

used their model to investigate surface waves that can occur on an infinite sheet of fluid on

an inclined plane subject to pressure and shear forces due to an airflow over it; they deduced

that steady waves are possible only for a restricted range of values of mass flux, those of

largest (finite) flux being sinusoidal, and those of smallest (non-zero) flux being solitary waves.

McKinley et al. [7] studied the spreading of a ridge of fluid and of a droplet on a horizontal

plane subject to a non-uniform pressure associated with a jet of air blowing normally onto it,

and subsequently McKinley and Wilson [8, 9] investigated the linear stability of the ridge and

droplet, respectively. Eames et al. [10] obtained similarity solutions describing the effect of a

constant surface shear stress due to the flow of an overlying fluid on a spreading viscous gravity

current emanating from a point or line source in a horizontal channel; they found that their

analytical and numerical solutions are in good agreement with their own experimental results

for the cases of a constant volume and a constant flux of fluid released from a point source.

A surface shear stress may be induced not only by an external airflow but also by gradi-
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ents of surface tension induced by, for example, surface-temperature gradients (the well-known

thermocapillarity or Marangoni effect). Problems of this type were considered by, for example,

Schwartz [11] in his analytical and numerical study of a film drawn up from an infinite bath of

fluid onto a vertical plate by thermocapillarity forces induced by a variation in the temperature

of the plate, by Holland et al. [12], who obtained similarity solutions describing steady flow of

a non-isothermal non-uniform slender rivulet driven by either gravity or a constant shear stress

at its free surface subject to thermocapillarity effects, as well as for thermocapillarity-driven

rivulets, and more recently by Gatapova and Kabov [13], who considered steady flow in an in-

clined rectangular microchannel sheared by gas flow with a localised heat source at the bottom

of the channel.

There is also a large body of work concerning the effects of surface shear on the behaviour

of two-dimensional and three-dimensional drops attached to solid surfaces, including, for ex-

ample, the work of Dussan V. [14], Li and Pozrikidis [15], Dimitrakopoulos and Higdon [16],

Dimitrakopoulos [17], Ding and Spelt [18], and Ding et al. [19].

Pioneering studies on flow around dry patches in a thin film draining down an inclined

plane under gravity and surface shear were performed by Hartley and Murgatroyd [20] and

Murgatroyd [21], who obtained conditions on the film thickness and flow rate for a dry patch to

persist; their theoretical predictions for the shear-driven case were validated numerically and

experimentally by Penn et al. [22]. Ponter et al. [23] derived corresponding conditions for a

dry patch to persist in a film flowing down a vertical plane in the presence of mass transfer,

and showed that their theoretical prediction is in good agreement with their own experiments.

Wilson et al. [24] obtained steady similarity solutions for flow around a non-uniform slender

dry patch in a thin film draining under gravity on an inclined plane, and subsequently an

existence theory for solutions of their mathematical problem was provided by Agarwal and

O’Regan [25]. Holland et al. [26] obtained steady similarity solutions for both gravity-driven

and constant-shear-stress-driven flow around dry patches in a non-isothermal film subject to

thermocapillarity effects, as well as for thermocapillary-driven flow around a dry patch. The

shapes and stability of dry patches in a film on an inclined plane were studied experimentally

by Podgorski et al. [27, 28] and Rio and Limat [29], who compared their results with a model of
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a dry patch similar to that proposed by Wilson [30] based on a balance between surface tension

and gravity. An improved model was studied by Sébilleau et al. [31] which includes the effects

of contact-line curvature, hydrostatic pressure and inertia; this is in good agreement with their

own experimental results and with those of Podgorski et al. [27].

Most of the work described above concerns flow of a Newtonian fluid; there are somewhat

fewer papers on surface-shear-stress-driven flow of a non-Newtonian power-law fluid. For exam-

ple, Pascal [32] obtained analytical and numerical solutions for the spreading of a fixed volume

of a power-law fluid over a slightly denser Newtonian fluid subject to a shear stress at the

free surface. Recently, Pascal and D’Alessio [33] investigated the linear stability of the flow of

Newtonian and power-law fluids down an inclined plane subject to a prescribed shear stress at

the free surface; they found that a shear stress down the plane destabilizes the flow whereas a

shear stress up the plane stabilizes it. Wilson et al. [34] obtained similarity solutions describing

steady flow of non-uniform slender rivulets of Newtonian and power-law fluids on an inclined

plane, driven by either gravity or a constant shear stress at its free surface; their solutions for

the two different driving mechanisms are qualitatively similar.

In addition to all the papers described above there is a much bigger literature on purely

gravity-driven flows of a thin film, much of which is relevant to the present study. Smith [35]

obtained a similarity solution describing steady flow of a sessile rivulet issuing from a point

source on an inclined plane, and this was generalised by Wilson and Burgess [36] to the case of

a power-law fluid. Perazzo and Gratton [37] obtained a wide class of steady two-dimensional

solutions for flow of a power-law fluid on an inclined plane. Smith [38], adapting the analysis

of Pattle [39], obtained a similarity solution describing the gravity-driven spreading of a sessile

thin film of a constant volume of fluid on a horizontal plane in two or three dimensions; this

was generalised by Huppert [40] to the case of a fluid issuing from a time-dependent source, and

by Gorodtsov [41] to the case of a power-law fluid. Huppert [42] obtained a similarity solution

describing two-dimensional unsteady flow of a thin film down an inclined plane, and Lister [43]

obtained similarity solutions describing unsteady flow of a Newtonian fluid down an inclined

plane from point and line sources for short times and long times.

Following the approach of our recent work on unsteady gravity-driven flow of a slender
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rivulet of a Newtonian fluid (Yatim et al. [44]), in the present paper we investigate unsteady

flow of a slender rivulet of a Newtonian fluid or a non-Newtonian power-law fluid on an inclined

plane, and unsteady flow around a slender dry patch in a film of such a fluid, the flow in each

case being driven by a constant longitudinal shear stress at its free surface.

2 Problem formulation

Consider unsteady three-dimensional flow of a thin film of either a Newtonian fluid with con-

stant density and viscosity or a non-Newtonian power-law fluid with constant density ρ and

variable viscosity µ = µ0q
N−1, where µ0 is a constant, q is the local shear rate and N (> 0)

is the power-law index, on a planar substrate inclined at an angle α (0 ≤ α ≤ π) to the hor-

izontal, driven by a constant shear stress τ (> 0) at its free surface directed down the plane.

The power-law fluid is shear thinning when 0 < N < 1 and is shear thickening when N > 1;

when N = 1 the special case of a Newtonian fluid with constant viscosity is recovered. When

0 < α < π/2 the fluid is on the upper side of the inclined plane (the sessile case), and when

π/2 < α < π it is on the underside of the inclined plane (the pendent case). We shall be

concerned with both unsteady slender rivulets of a power-law fluid and unsteady slender dry

patches in a film of such a fluid.

We adopt Cartesian coordinates (x, y, z) with the x axis down the line of greatest slope

and the z axis normal to the substrate, with the substrate at z = 0, and we denote the free

surface profile of the film by z = h(x, y, t), where t denotes time. We restrict attention to flows

that are symmetric about y = 0 (that is, to solutions for which h is even in y). We denote

the (unknown) semi-width of the rivulet or dry patch by a = a(x, t), so that h = 0 at the

contact lines y = ±a; for a rivulet the fluid occupies |y| ≤ a, whereas for a dry patch the fluid

occupies |y| ≥ a. Figures 1 and 2 show the geometries of the rivulet and dry-patch problems,

respectively.

Unsteady flow of an incompressible power-law fluid is governed by the mass and momentum

balances

∇ · u = 0, ρ
Du

Dt
= −∇p + ρg +∇ ·

(

µ(q)e
)

, (1)
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where u = (u(x, y, z, t), v(x, y, z, t), w(x, y, z, t)) and p = p(x, y, z, t) denote velocity and pres-

sure, g = g(sinα, 0,− cosα) denotes gravitational acceleration, e denotes the rate-of-strain

tensor, and the local shear rate q = q(x, y, z, t) is given by

q =
(

2 tr(e2)
)

1
2 =

[

2u2
x + 2v2y + 2w2

z + (uy + vx)
2 + (uz + wx)

2 + (vz + wy)
2
]

1
2 . (2)

These equations are to be solved subject to the boundary conditions of no slip and no penetra-

tion at z = 0:

u = v = w = 0, (3)

and balance of stress at z = h:

−pn+ 2µe · n = −pan+ τt− γκn, (4)

where n = (−hx,−hy, 1)(1+h2
x+h2

y)
−1/2 denotes the unit outward normal to the fluid at z = h,

κ = ∇ · n is the mean curvature of the free surface, t = (1, 0, hx)(1 + h2
x)

−1/2 is the down-plane

unit tangent vector to the free surface in the x,z plane, γ is the (constant) coefficient of surface

tension, and pa denotes atmospheric pressure. In addition we have the kinematic condition on

z = h:

ht + ūx + v̄y = 0, (5)

and zero-mass-flux conditions at the contact lines y = ±a(x, t):

v̄ = ±axū, (6)

where the local fluxes ū = ū(x, y, t) and v̄ = v̄(x, y, t) are defined by

ū =

∫ h

0

u dz, v̄ =

∫ h

0

v dz (7)

(see, for example, Young [45]).

For either a thin shear-stress-driven slender rivulet or a slender dry patch in a thin shear-

stress-driven film we non-dimensionalise and scale according to

x = `x∗, y = ε`y∗, z = εδ`z∗, h = εδ`h∗, a = ε`a∗,

t =
`

U
t∗, u = Uu∗, v = εUv∗, w = εδUw∗,

p = pa + εδρg`| cosα|p∗, q =

(

τ

µ0

)
1
N

q∗, µ = µ0

(

τ

µ0

)
N−1
N

µ∗,



























(8)
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where δ � 1 and ε � 1 are the small aspect ratios in the y,z and x,y planes, respectively,

` = τ/δ2ρg| cosα| is the length scale in the x direction, and U = (τ/µ0)
1/N εδ` is a characteristic

velocity down the plane. Dropping the superscript stars for clarity we obtain from (2)

q =
[

u2
z + ε2v2z + δ2u2

y + 2ε2δ2
(

u2
x + v2y + w2

z + uyvx + vzwy + uzwx

)

+ ε2δ4w2
y + ε4δ2v2x + ε4δ4w2

x

]
1
2 ; (9)

therefore for the flows with uz ≥ 0 that will be considered in the present work, the shear rate

is given by q = uz at leading order in δ and ε, and hence the viscosity µ is given by µ = uN−1
z

at leading order.

Provided that ε| tanα| � δ (which requires that α 6= π/2) and that R � 1, where R is an

appropriate reduced Reynolds number defined by

R =
ε3τ

δρg2 cos2 α

(

τ

µ0

)
2
N

, (10)

equation (1) leads to

ux + vy + wz = 0, (11)

(µuz)z = 0, (12)

−py + (µvz)z = 0, (13)

−pz − Sg = 0 (14)

at leading order in ε and δ, where we have introduced the notation Sg = sgn(cosα) = ±1

(so that Sg = 1 and Sg = −1 correspond to the sessile and pendent cases, respectively). In

particular, the down-slope pressure gradient px and the down-slope component of gravity are

negligible provided that ε2 � 1 and ε| tanα| � δ, respectively; in that case the draining down

the plane caused by gravity is negligible in comparison with the flow down the plane driven

by the prescribed surface shear stress (though the pressure gradient that arises due to the z

component of gravity induces a nonzero lateral flow).

Equations (11)–(14) are to be integrated subject to the boundary conditions (3) at z = 0 and

the leading order balances of normal and tangential stresses at z = h obtained from equation

(4), namely

p = −Ca−1hyy, µuz = 1, µvz = 0, (15)
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where Ca = ρg| cosα|ε2`2/γ is an appropriate non-dimensional capillary number. Provided

that Ca−1 � 1 the effect of surface tension is negligible, and in that case the solution is simply

p = Sg (h− z) , (16)

u = z, uz = 1, µ = 1, (17)

v = −Sghy

2
z (2h− z) , (18)

w =
Sg

6

[

hyz
2(3h− z)

]

y
. (19)

Substituting (17) and (18) into equation (7) gives

ū =
1

2
h2, v̄ = −Sg

3
h3hy, (20)

and then the kinematic condition (5) yields the governing partial differential equation for h,

namely

3ht = Sg

(

h3hy

)

y
− 3hhx, (21)

which, we note, is independent of the power-law index N . From (20) we have ū = 0 at y = ±a,

so that the zero-mass-flux condition (6) at the contact lines reduces to v̄ = 0 at y = ±a; thus

we have the contact-line conditions

h = 0 at y = ±a, h3hy → 0 as y → ±a. (22)

3 A similarity solution

Equation (21) has an unsteady similarity solution of the form

h =
∣

∣

∣

x

t

∣

∣

∣
H(η), η =

√
3|t|

|x| 32
y, (23)

where the functionH = H(η) (≥ 0) of the independent variable η is to be determined, and where

the numerical factor of
√
3 has been included in the definition of η for subsequent convenience.

With (23), equation (21) reduces to the ordinary differential equation

St (ηH
′ −H) = Sg

(

H3H ′
)

′

+ Sx

(

3

4
η(H2)′ −H2

)

(24)
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for H , where a dash denotes differentiation with respect to η, and we have introduced the

notation St = sgn(t) = ±1 and Sx = sgn(x) = ±1. The cases St = 1 and St = −1 correspond

to time running from 0 to ∞ and from −∞ to 0, respectively, and the cases Sx = 1 and

Sx = −1 correspond to the fluid being in x > 0 and x < 0, respectively. Thus in the differential

equation (24) there are four distinct cases to consider, namely St = Sg = Sx, St = −Sg = Sx,

St = Sg = −Sx and St = −Sg = −Sx. Furthermore, each of these cases has two different

physical interpretations; for instance, physically the case St = −Sg = Sx = 1 corresponds to

a pendent film in x > 0, with t > 0, whereas the case St = −Sg = Sx = −1 corresponds to a

sessile film in x < 0, with t < 0, but the two cases will have exactly the same mathematical

solution. We note that, like (21), equation (24) is independent of N .

We now investigate solutions of the form (23) representing a rivulet (in Section 4) and a

dry patch (in Section 5).

4 A rivulet

For a symmetric rivulet, appropriate boundary and symmetry conditions on H are

H = H0, H ′ = 0 at η = 0, (25)

where H0 ≥ 0 is to be determined; the (unknown) position of the contact line is denoted by

η = η0, so that the fluid occupies |η| ≤ η0, and from (22) we have

H = 0 at η = η0, H3H ′ → 0 as η → η0. (26)

From (23) the middle thickness of the rivulet, hm = h(x, 0, t), and the semi-width of the rivulet

vary with x and t according to

hm =
∣

∣

∣

x

t

∣

∣

∣
H0, a =

|x| 32√
3|t|

η0, (27)

predicting that at any time t the rivulet widens or narrows according to |x|3/2 and thickens or

thins according to |x|, and that at any station x the rivulet widens or narrows according to |t|−1

and thickens or thins according to |t|−1, independent of the power-law index N . The rivulet
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has a “nose” that, according to the similarity solution, remains stationary at the origin O for

all time. We note that the assumptions that the rivulet is thin and slender are not violated at

the nose, since ∂a/∂x = 0 and ∂hm/∂x is finite there; however, the fact that there is a cusp at

the nose means that surface-tension effects (neglected in the present analysis) will inevitably

be significant there.

Of the four cases St = Sg = Sx, St = −Sg = Sx, St = Sg = −Sx and St = −Sg = −Sx to

consider in the differential equation (24) we shall show shortly that for a rivulet only the case

St = −Sg = Sx can lead to physically realisable solutions.

The cross-sectional area of the rivulet at any station x, denoted by A and scaled with ε2δ`2,

is given by

A = 2

∫ a

0

h dy =
I1|x|

5
2

√
3|t|2

, (28)

and the total volume flux of fluid across any section x = constant, denoted by Q and scaled

with ε2δ`2U , is given by

Q = 2

∫ a

0

ū dy =
I2|x|

7
2

2
√
3|t|3

, (29)

where In is defined as

In = 2

∫ η0

0

Hn dη. (30)

Also the area of a finite (non-dimensional) length L0 of the wetted part of the inclined plane

in 0 ≤ |x| ≤ L0 (that is, the “footprint” of that part of the rivulet), denoted by A0 and scaled

with ε`2, is given by

A0 = 2

∫ L0

0

a dx =
4L

5
2
0 η0

5
√
3|t|

. (31)

Near η = 0 we find straightforwardly from (24) and (25) that H satisfies

H = H0 +
SxH0 − St

2SgH2
0

η2 +O
(

η4
)

(32)

when H0 6= 0. Near the contact line η = η0 there are two possible forms for H satisfying the

differential equation (24) and boundary condition (26)1, namely

H ∼
[

−3Stη0
Sg

(η0 − η)

]
1
3

(33)
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(valid only provided that St = −Sg) and

H ∼ C(η0 − η)
1
4 − 4Stη0

5SgC2
(η0 − η)

1
2 (34)

(valid for any St = ±1 and Sg = ±1), where C is a positive constant. Note that both (33) and

(34) have H ′ → ∞ as η → η0, showing that the lubrication approximation always fails near

the contact lines (and that there is no freedom to impose prescribed conditions on the three-

phase contact angles). However, with (34) the zero-mass-flux condition (26)2 would require

that C = 0; therefore the behaviour (34) is immediately eliminated, so that the only possible

behaviour near η = η0 is given by (33). Furthermore, the two cases with St = Sg, in which

(34) is the only possible behaviour near the contact line, are also eliminated, and so we are left

with only the cases with St = −Sg; determining the physical solutions for these cases from the

condition C = 0 will be discussed shortly.

Since the rivulet has two contact lines, at η = ±η0, the function H (≥ 0) must have at

least one maximum in |η| ≤ η0. From equation (24), at any stationary point of the free surface

(where H ′ = 0) for the cases with St = −Sg we have

H2H ′′ = 1− StSxH, (35)

provided that H 6= 0. In the case St = −Sg = −Sx, equation (35) shows immediately that any

stationary point of H is a minimum, so there can be no solution for H with a maximum, and

therefore this case is eliminated.

With all other cases eliminated, the only case that could lead to physically realisable solu-

tions is St = −Sg = Sx. The sessile case St = −Sg = Sx = −1 corresponds to fluid in x < 0

flowing in the direction of τ and “piling up” at x = 0, notionally becoming infinitely deep at

t = 0, the substrate in x > 0 remaining unwetted. The pendent case St = −Sg = Sx = 1

corresponds to a deep (notionally infinitely deep) layer of fluid in x > 0 at t = 0 collapsing in

the direction of τ as time elapses, the substrate in x < 0 remaining unwetted. Of course, in

both cases, by a simple shift of origin the position x = 0 may be replaced by any fixed finite

position x = x0 without affecting the form of solution; similarly, by a simple shift in time the

instant t = 0 at which the solution is singular may instead be taken to be any other fixed

instant t = t0.
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With St = −Sg = Sx, equation (24) becomes

(

H3H ′
)

′ − 3

4
η(H2)′ + ηH ′ +H2 −H = 0. (36)

A closed-form solution of this differential equation is not available, and so it must, in general,

be solved numerically. We did this in two stages, first by using a shooting method to solve (36)

subject to (25) to determine the value of η0 in (26)1 for a given value of H0, and then by using

the condition C = 0 to select the physically realisable solutions from this family of solutions;

H0 and η0 are thus determined as part of the solution.

The results for η0 as a function of H0 obtained by shooting are shown in Figure 3. This

function has four branches, labelled as branches 1, 2, 3 and 4 in Figure 3; branch 1 extends

from H0 ' 0.0000 to H0 ' 0.9250, branch 2 from H0 ' 0.9250 to H0 ' 1.0000, branch 3

from H0 ' 1.0000 to H0 ' 1.2708, and branch 4 from H0 ' 1.2708 to large values of H0,

there being asymptotes to the function at H0 ' 0.9250, H0 ' 1.0000 and H0 ' 1.2708. (Here

and subsequently, quantities obtained numerically are given to four decimal places.) There is

a solution η0 for every value of H0 except at the asymptotes, at which there is no solution.

Figure 4 shows numerically calculated cross-sectional profiles H for a range of values of H0 on

the different branches. Equation (35) shows that any stationary point for which H < 1 is a

minimum, and any stationary point for which H > 1 is a maximum. Solutions on branches 1

and 2 are “double-humped”, with a minimum at η = 0 and two equal maxima symmetrically

placed about η = 0, and solutions on branch 3 are “triple-humped”, with a maximum at η = 0,

and two equal maxima and two equal minima symmetrically placed about η = 0; solutions on

branch 4 are “single-humped”, with a single maximum at η = 0.

We can understand the large-H0 limit shown in Figure 3 by analysing the behaviour of

H and η0 in the limit H0 → ∞. From the numerically calculated solutions, it is found that

H = O(H0) and η0 = O(H0), and so we write

H = H0H̄ (η̄) , η = H0η̄, η0 = H0η̄0; (37)

then at leading order equation (36) reduces to

(

H̄3H̄ ′
)

′ − 3

4
η̄
(

H̄2
)

′

+ H̄2 = 0, (38)
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which is readily solved numerically subject to the boundary conditions

H̄(0) = 1, H̄ ′(0) = 0, (39)

to yield η̄0 ' 0.6801. Figure 5 shows comparisons between profiles H for H0 = 3 and H0 = 10

computed numerically (full curves) and from the leading order asymptotic solution in the limit

H0 → ∞ (dashed curves), demonstrating the good agreement between the two for sufficiently

largeH0. In addition, Figure 3 includes (as a dashed-dotted curve) the leading order asymptotic

solution for η0 as a function of H0 in the limit H0 → ∞.

Next we identify the physically realisable solutions from the family of solutions shown in

Figure 3. In order to do this, we must impose condition (26)2, or equivalently the condition

C = 0 in (34). A simple and accurate way to determine C is to integrate equation (36) from

η = 0 to η = η0, which leads to

∫ η0

0

7H2 − 8H dη =







0 for (33),

C4 for (34),
(40)

so that C in (34) is given by

C =

[
∫ η0

0

7H2 − 8H dη

]
1
4

=

[

1

2
(7I2 − 8I1)

]
1
4

, (41)

which is evaluated with the numerical solution for H(η). Also these values of C were checked

against values that we obtained from (34) using the numerical solution near η = η0. Figure 6

shows a plot of C calculated from (41) as a function of H0. From this plot we see that there is

only one value of H0 for which C = 0, namely H0 ' 1.2708, for which the corresponding value

of η0 is η0 ' 1.9152. Thus our main conclusion is that there is a unique physically realisable

solution of the type sought for an unsteady rivulet. This solution has a single-humped cross-

sectional profile; the associated values of I1 and I2 in the expressions (28) and (29) for the

cross-sectional area A and flux Q are given by equation (30) as I1 ' 4.2495 and I2 ' 4.8565,

consistent with the fact that 8I1 = 7I2 in the case C = 0.

As mentioned previously, although the cases where St = −Sg = Sx = 1 and St = −Sg =

Sx = −1 have the same mathematical solution, the two cases have different physical interpre-

tations, the former representing a pendent rivulet and the latter a sessile rivulet. However,

13



numerical results of a stability study of corresponding similarity solutions for a gravity-driven

flow of a Newtonian fluid by Yatim et al. [44] suggest that the sessile case is stable but that

the pendent case is unstable, indicating that we may also tentatively eliminate the possibil-

ity of a pendent rivulet for the present problem. Figure 7 shows a three-dimensional plot of

the free surface z = h of the sessile rivulet predicted by the similarity solution (23) for the

physical solution H0 ' 1.2708, η0 ' 1.9152, at times t = −5, −2 and −1; the insert shows

the (single-humped) cross-sectional profile of the solution. In particular, Figure 7 illustrates

that the sessile rivulet becomes narrower and thinner with |x| as it flows down the plane, but

becomes wider and thicker as time elapses (from t → −∞ to t = 0), eventually exhibiting a

finite-time singularity, becoming infinite everywhere at t = 0.

So far we have interpreted the similarity solution (23) as representing an infinitely long

rivulet of infinite volume. However, in the spirit of Huppert’s [42] analysis of two-dimensional

gravity-driven unsteady flow of a thin film down an inclined plane, we may alternatively in-

terpret the solution as representing a rivulet of (prescribed) finite volume, by truncating it at

some finite length L = L(t) (scaled with `), so that in the sessile case it occupies −L ≤ x ≤ 0.

The volume of fluid in such a rivulet, denoted by V and scaled with ε2δ`3, is given by

V =

∫ 0

−L(t)

∫ a

−a

h dy dx =
2I1L

7
2

7
√
3t2

, (42)

and so the length L of the rivulet at time t is given by

L =

(

7
√
3V t2

2I1

)
2
7

, (43)

decreasing with t according to t4/7.

5 A dry patch

The approach discussed in Section 4 may also be used to investigate unsteady shear-stress-

driven flow of an infinitely wide thin film of a Newtonian or a non-Newtonian power-law fluid

around a symmetric slender dry patch on an inclined plane. Conditions for the dry patch

to be slender, for the film to be thin, and for the gravity-driven draining to be negligible in
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comparison with the flow driven by τ are given by ε � 1, δ � 1 and ε| tanα| � δ, respectively.

In that case the governing equation (21) again holds, but now the fluid occupies |y| ≥ a, where

a = a(x) denotes the semi-width of the dry patch, the region |y| < a of the inclined plane being

dry. Seeking a similarity solution of the form (23) we find that H(η) again satisfies the ordinary

differential equation (24), now valid in |η| ≥ η0, where η = η0 again denotes the (unknown)

position of the contact line where H = 0 (and the fluid region now corresponds to |η| ≥ η0).

The similarity solution predicts that at any time t the dry patch (whose semi-width a is as in

(27)) widens or narrows according to |x|3/2 and the film thickens or thins according to |x|, and

that at any station x the dry patch widens or narrows like |t|−1 and the film thickens or thins

like |t|−1, independent of the power-law index N .

There are again four distinct cases to consider in equation (24), namely St = Sg = Sx,

St = −Sg = Sx, St = Sg = −Sx and St = −Sg = −Sx, each of which again has two different

physical interpretations, namely the sessile case and the pendent case. We look for solutions

H satisfying H → H∞ as η → ∞, where H∞ is a positive constant representing the depth of

the film far from the dry patch; then equation (24) immediately gives StH∞ = SxH
2
∞
, which

requires both that St = Sx and that H∞ = 1. Therefore appropriate far-field conditions are

H → 1, H ′ → 0 as η → ∞ (44)

(so that the film thickness satisfies h → |x/t| as y → ±∞, showing that the film becomes

uniform in y far from the dry patch, but varies with x and t). From equation (44) H satisfies

H ∼ 1+F with F → 0 as η → ∞, and so by (24) with St = Sx we find that F = F (η) satisfies

SgF
′′ + St

(η

2
F ′ − F

)

= 0 (45)

at leading order as η → ∞. If St = Sg then equation (45) has general solution

F = c1

(

1 +
η2

2

)

+ c2 exp

(

−η2

4

)

H−3

(η

2

)

, (46)

where c1 and c2 are constants, and H−3 denotes a Hermite function of degree −3 (see [46]);

then equation (44) requires that c1 = 0, and therefore

H ∼ 1 + c2η
−3 exp

(

−η2

4

)

as η → ∞, (47)
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showing that H approaches its far-field value 1 monotonically as η → ∞. On the other hand

if St = −Sg then no solution of (45) satisfying F → 0 as η → ∞ is possible; therefore only the

case St = Sg = Sx could possibly lead to a physically realisable dry-patch solution of the type

sought. The sessile case St = Sx = Sg = 1 corresponds to a layer of fluid in x > 0 collapsing

(in the direction of τ) around a contracting dry patch as time elapses, the substrate in x < 0

remaining unwetted. The pendent case St = Sx = Sg = −1 corresponds to fluid in x < 0

flowing (in the direction of τ) around an expanding dry patch as time elapses, and “piling up”

at x = 0, the substrate in x > 0 remaining unwetted.

The free-surface profile H must again satisfy the contact-line conditions in (26). Near the

contact line η = η0, the asymptotic behaviour of solutions of (24) given in (33) also holds for a

dry patch (now with St = Sg and η ≥ η0), but (34) is replaced by

H ∼ C(η − η0)
1
4 +

4Stη0
5SgC2

(η − η0)
1
2 (48)

as η → η+0 , where C again denotes a positive constant. However, equation (26) again requires

that C = 0, implying that only the case St = Sg = Sx could lead to a physically realisable

solution, in which case equation (24) becomes

(

H3H ′
)

′

+
3

4
η(H2)′ − ηH ′ −H2 +H = 0. (49)

From equation (49), at any stationary point of the free surface we have

H ′′ =
H − 1

H2
, (50)

showing that any stationary point with H < 1 (H > 1) would be a maximum (minimum); we

conclude that H must increase monotonically from H = 0 at η = η0 to H = 1 as η → ∞, with

0 ≤ H < 1.

As in the corresponding analysis for a rivulet described previously, we solved the ordinary

differential equation (49) numerically by means of a shooting method. For a dry patch we may

shoot either from some far-field position η = η∞ � 1 (using approximate boundary conditions

obtained from (47)) until the solution achieves a contact line at some position η = η0, or from

a chosen position η = η0 to see whether the solution settles down to a constant value H = 1
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as η becomes large; we chose to use the latter method. The numerical computation cannot be

started exactly at the contact line η = η0 (because of the singularity there), so instead it was

started from a position η = η0 + δ, where δ (> 0) is small; thus in practice we solved equation

(49) subject to approximated boundary conditions obtained from (33), namely

H(η0 + δ) ∼ (3η0δ)
1
3 , H ′(η0 + δ) ∼

( η0
9δ2

)
1
3
, (51)

and the computation was then repeated with smaller values of δ (as small as δ = 10−20) until

the solution converged to within a given tolerance. This procedure was then repeated with

different values of η0. In this way we arrive at our main conclusion, namely that there is

only one physically realisable dry-patch solution of the type sought, and that for this solution

η0 ' 0.9573.

As in the rivulet case, it may again be anticipated that the sessile solution will be stable

whereas the pendent solution will be unstable. Figure 8 shows a three-dimensional plot of the

solution for a sessile film (St = Sg = Sx = +1) at the instant t = 1; the insert shows the

cross-sectional profile of the solution. In particular, Figure 8 illustrates the widening of the

dry patch and the thickening of the film with x; also we note that, as for the rivulet, the dry

patch has a “nose” that remains stationary at O for all time. Figure 9 shows cross-sections at

position x = 5 of the sessile film at times t = 1, 2, 3, 4, 5; in particular, Figure 9 illustrates the

narrowing of the dry patch and the thinning of the film with t.

The film is of infinite lateral extent, and its cross-sectional area (at constant x) is infinite,

as is the volume flux of fluid down the inclined plane. However, the difference between the

cross-sectional area of a film of thickness |x/t| (uniform in y) and that of a film containing a

dry patch with the same thickness far from the patch, denoted 4A and scaled with ε2δ`2, is

finite and is given by

4A =
|x| 52√
3t2

(η0 + J1), (52)

and similarly the difference in volume flux in the two films, denoted 4Q and scaled with ε2δ`2U ,

is finite and is given by

4Q =
|x| 72

2
√
3|t|3

(η0 + J2), (53)
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where we have defined the constants Jn by

Jn =

∫

∞

η0

1−Hn dη, (54)

so that J1 ' 0.2382 and J2 ' 0.4090. (Integration of (49) from η = η0 to η = ∞ leads

to 7J2 − 8J1 = η0, numerical confirmation of which provides a check on the accuracy of the

numerical solution.) Also the area A0 of a finite length L0 of the dry part of the inclined plane

in 0 < |x| < L0 is again given by (31).

6 Discussion

We have obtained similarity solutions of the form (23) representing unsteady flow of a thin

slender rivulet of either a Newtonian fluid or a non-Newtonian power-law fluid on an inclined

plane, and unsteady flow of a thin film of such a fluid around a slender dry patch on an inclined

plane, the flow in each case being driven by a constant longitudinal shear stress applied at

the free surface. There were four cases to consider for each problem, but we showed that the

only cases that could lead to physically realisable solutions are St = −Sg = Sx for a rivulet

(representing both a pendent rivulet (Sg = −1) in x > 0, with t > 0, contracting with t, and

a sessile rivulet (Sg = 1) in x < 0, with t < 0, expanding with t), and St = Sg = Sx for a

dry patch (representing both a pendent film flowing around an expanding dry patch in x < 0,

with t < 0, and a sessile film flowing around a contracting dry patch in x > 0, with t > 0).

In the case of a rivulet we found that there is only one physically realisable solution, with

a single-humped cross-sectional profile of thickness H0 ' 1.2708 and semi-width η0 ' 1.9152

(in terms of the similarity variables), and in the case of a dry patch there is again only one

physically realisable solution, of semi-width η0 ' 0.9573, independent of the power-law index

N .

The analysis includes the Newtonian case (for which N = 1) as a special case. Although N

does not appear in the partial differential equation (21) for h, nor in the powers of x and t in

the similarity solution (23), nor in the ordinary differential equation (24) for H , it nevertheless

affects the nature of the solutions, since it appears in the velocity scale U in equation (8), and
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hence in the scaling of the shear rate q and of the shear-rate-dependent viscosity µ. The effect

of N on the physical appearance of the solutions may be illustrated by a comparison of the

rivulet solution for a power-law fluid with N 6= 1 with that for a Newtonian fluid (N = 1)

of the same density ρ, on the same incline α, subject to the same driving surface shear stress

τ , as follows. With a superposed hat used to denote quantities for the Newtonian fluid, its

viscosity µ̂ is independent of τ , whereas the (dimensional) viscosity of the power-law fluid in

this flow is µ = µ0(τ/µ0)
(N−1)/N ; also the length scales ` and ˆ̀ for the two fluids are the

same, namely ` = τ/δ2ρg| cosα| = ˆ̀, whereas the velocity scales U and Û are different, namely

U = (τ/µ0)
1/Nεδ` and Û = (τ/µ̂)εδ`. Thus at a given position x and time t we find from

(27)–(29), (31) and the scalings (8) that

hm

ĥm

=
a

â
=

A0

Â0

=
µ

µ̂
=

q̂

q
=

(

τ

τc

)
N−1
N

,
A

Â
=

Q

Q̂
=

(

τ

τc

)

2(N−1)
N

(55)

in dimensional terms, where the critical value of τ , denoted τc, is defined by τc = (µ̂N/µ0)
1/(N−1)

(and where we have used the fact that H0 and η0 are the same for the two fluids, since (24)–(26)

are independent of N). Thus for a shear-thinning fluid (N < 1), if, for given values of µ0 and

µ̂, τ satisfies τ < τc then the quantities in (55) are greater than 1, whereas if τ > τc then the

quantities in (55) are less than 1. Therefore a rivulet of a shear-thinning fluid subject to a weak

shear stress (τ < τc) will be wider and thicker than a corresponding rivulet of a Newtonian fluid,

whereas such a rivulet subject to a strong shear stress (τ > τc) will be narrower and thinner

than a corresponding rivulet of a Newtonian fluid; a converse statement holds for a rivulet

of a shear-thickening fluid. On the other hand, if, for given values of τ and µ̂, µ0 satisfies

µ0 > µ0c (µ0 < µ0c), where the critical value of µ0, denoted µ0c, is defined by µ0c = µ̂N/τN−1,

then a rivulet of a power-law fluid will be wider and thicker (narrower and thinner) than a

corresponding rivulet of a Newtonian fluid, independent of whether the power-law fluid is shear

thinning or shear thickening. Analogous statements hold for flow around a dry patch.

Both the rivulet and dry patch have a “nose” that remains stationary at O for all time. The

solution for a sessile rivulet exhibits a finite-time singularity, becoming infinite everywhere at

time t = 0.

Finally, it is worth mentioning that there are significant qualitative differences between
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shear-stress-driven flow studied herein and gravity-driven flow studied earlier by Yatim et al. [44]

in the case of a Newtonian fluid. In gravity-driven rivulet flow there are two physically realisable

solutions (one with a double-humped cross-sectional profile and the other with a single-humped

cross-sectional profile), whereas in shear-stress-driven flow there is only one physically realisable

solution (whose cross-sectional profile is single-humped). Furthermore, there are no dry-patch

similarity solutions of the type sought in gravity-driven flow, whereas there is a dry-patch

solution in the present shear-stress-driven problem.
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Figure 1: Sketch of the geometry of the rivulet problem.
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Figure 2: Sketch of the geometry of the dry-patch problem.
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Figure 3: Plot of η0 as a function of H0, obtained by solving (36) numerically subject to (25).

The dashed-dotted curve is the leading-order asymptotic solution in the limit H0 → ∞.
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Figure 4: Numerically calculated cross-sectional rivulet profiles H = H(η) for H0 = 0.1 and

0.9249542 (branch 1), 0.94 and 0.99 (branch 2), 1.01 and 1.2 (branch 3), and 1.3 and 10 (branch

4).

28



(a) (b)

−1−2 −3−6 00 1 2 3

3

1.5 5

6

10
H(η)H(η)

ηη

Figure 5: Cross-sectional rivulet profilesH = H(η) obtained by solving (36) numerically subject

to (25) (full curves) and from the leading order asymptotic solution in the limitH0 → ∞ (dashed

curves) for (a) H0 = 3 and (b) H0 = 10.
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Figure 6: Plot of C calculated from equation (41) as a function of H0. The dashed-dotted curve

is the leading-order asymptotic solution in the limit H0 → ∞.
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Figure 7: Three-dimensional plot of the free surface z = h of the sessile rivulet predicted by

the present similarity solution (23) with H satisfying (36) subject to (25) and (26), for which

H0 ' 1.2708 and η0 ' 1.9152, at times t = −5, −2 and −1. The insert shows the cross-sectional

profile.
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Figure 8: Three-dimensional plot of the free surface z = h of the sessile film containing a dry

patch predicted by the present similarity solution (23) with H satisfying (49) subject to (26)

and (44), for which η0 ' 0.9573, at time t = 1. The insert shows the cross-sectional profile.
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Figure 9: Cross-sectional profiles at position x = 5 of the sessile film containing a dry patch,

at times t = 1, 2, 3, 4, 5.
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