117 research outputs found
Photoperiod Regulates Lean Mass Accretion, but Not Adiposity, in Growing F344 Rats Fed a High Fat Diet
yesIn this study the effects of photoperiod and diet, and their interaction, were examined for their effects on growth and body composition in juvenile F344 rats over a 4-week period. On long (16L:8D), relative to short (8L:16D), photoperiod food intake and growth rate were increased, but percentage adiposity remained constant (ca 3-4%). On a high fat diet (HFD), containing 22.8% fat (45% energy as fat), food intake was reduced, but energy intake increased on both photoperiods. This led to a small increase in adiposity (up to 10%) without overt change in body weight. These changes were also reflected in plasma leptin and lipid levels. Importantly while both lean and adipose tissue were strongly regulated by photoperiod on a chow diet, this regulation was lost for adipose, but not lean tissue, on HFD. This implies that a primary effect of photoperiod is the regulation of growth and lean mass accretion. Consistent with this both hypothalamic GHRH gene expression and serum IGF-1 levels were photoperiod dependent. As for other animals and humans, there was evidence of central hyposomatotropism in response to obesity, as GHRH gene expression was suppressed by the HFD. Gene expression of hypothalamic AgRP and CRH, but not NPY nor POMC, accorded with the energy balance status on long and short photoperiod. However, there was a general dissociation between plasma leptin levels and expression of these hypothalamic energy balance genes. Similarly there was no interaction between the HFD and photoperiod at the level of the genes involved in thyroid hormone metabolism (Dio2, Dio3, TSHβ or NMU), which are important mediators of the photoperiodic response. These data suggest that photoperiod and HFD influence body weight and body composition through independent mechanisms but in each case the role of the hypothalamic energy balance genes is not predictable based on their known function.Scottish Government (Rural and Environment Science and Analytical Services Division, http://www.scotland.gov.uk/), AWR LR LMT PJM and the BBSRC, (http://www.bbsrc.ac.uk/home/home.aspx, grant BB/K001043/1), AWR GH PJ
Predicting Spike Occurrence and Neuronal Responsiveness from LFPs in Primary Somatosensory Cortex
Local Field Potentials (LFPs) integrate multiple neuronal events like synaptic inputs and intracellular potentials. LFP spatiotemporal features are particularly relevant in view of their applications both in research (e.g. for understanding brain rhythms, inter-areal neural communication and neronal coding) and in the clinics (e.g. for improving invasive Brain-Machine Interface devices). However the relation between LFPs and spikes is complex and not fully understood. As spikes represent the fundamental currency of neuronal communication this gap in knowledge strongly limits our comprehension of neuronal phenomena underlying LFPs. We investigated the LFP-spike relation during tactile stimulation in primary somatosensory (S-I) cortex in the rat. First we quantified how reliably LFPs and spikes code for a stimulus occurrence. Then we used the information obtained from our analyses to design a predictive model for spike occurrence based on LFP inputs. The model was endowed with a flexible meta-structure whose exact form, both in parameters and structure, was estimated by using a multi-objective optimization strategy. Our method provided a set of nonlinear simple equations that maximized the match between models and true neurons in terms of spike timings and Peri Stimulus Time Histograms. We found that both LFPs and spikes can code for stimulus occurrence with millisecond precision, showing, however, high variability. Spike patterns were predicted significantly above chance for 75% of the neurons analysed. Crucially, the level of prediction accuracy depended on the reliability in coding for the stimulus occurrence. The best predictions were obtained when both spikes and LFPs were highly responsive to the stimuli. Spike reliability is known to depend on neuron intrinsic properties (i.e. on channel noise) and on spontaneous local network fluctuations. Our results suggest that the latter, measured through the LFP response variability, play a dominant role
Oxytocin and Vasopressin Involved in Restraint Water-Immersion Stress Mediated by Oxytocin Receptor and Vasopressin 1b Receptor in Rat Brain
Aims: Vasopressin (AVP) and oxytocin (OT) are considered to be related to gastric functions and the regulation of stress response. The present study was to study the role of vasopressinergic and oxytocinergic neurons during the restraint waterimmersion stress. Methods: Ten male Wistar rats were divided into two groups, control and RWIS for 1h. The brain sections were treated with a dual immunohistochemistry of Fos and oxytocin (OT) or vasopressin (AVP) or OT receptor or AVP 1b receptor (V1bR). Results: (1) Fos-immunoreactive (Fos-IR) neurons dramatically increased in the hypothalamic paraventricular nucleus (PVN), the supraoptic nucleus (SON), the neucleus of solitary tract (NTS) and motor nucleus of the vagus (DMV) in the RWIS rats; (2) OT-immunoreactive (OT-IR) neurons were mainly observed in the medial magnocellular part of the PVN and the dorsal portion of the SON, while AVP-immunoreactive (AVP-IR) neurons mainly distributed in the magnocellular part of the PVN and the ventral portion of the SON. In the RWIS rats, Fos-IR neurons were indentified in 31 % of OT-IR neurons and 40 % of AVP-IR neurons in the PVN, while in the SON it represented 28%, 53 % respectively; (3) V 1bR-IR and OTR-IR neurons occupied all portions of the NTS and DMV. In the RWIS rats, more than 10 % of OTR-IR and V1bR-IR neurons were activated in the DMV, while lower ratio in the NTS. Conclusion: RWIS activates both oxytocinergic and vasopressinergic neurons in the PVN and SON, which may project to th
Default-Mode-Like Network Activation in Awake Rodents
During wakefulness and in absence of performing tasks or sensory processing, the default-mode network (DMN), an intrinsic central nervous system (CNS) network, is in an active state. Non-human primate and human CNS imaging studies have identified the DMN in these two species. Clinical imaging studies have shown that the pattern of activity within the DMN is often modulated in various disease states (e.g., Alzheimer's, schizophrenia or chronic pain). However, whether the DMN exists in awake rodents has not been characterized. The current data provides evidence that awake rodents also possess ‘DMN-like’ functional connectivity, but only subsequent to habituation to what is initially a novel magnetic resonance imaging (MRI) environment as well as physical restraint. Specifically, the habituation process spanned across four separate scanning sessions (Day 2, 4, 6 and 8). At Day 8, significant (p<0.05) functional connectivity was observed amongst structures such as the anterior cingulate (seed region), retrosplenial, parietal, and hippocampal cortices. Prior to habituation (Day 2), functional connectivity was only detected (p<0.05) amongst CNS structures known to mediate anxiety (i.e., anterior cingulate (seed region), posterior hypothalamic area, amygdala and parabracial nucleus). In relating functional connectivity between cingulate-default-mode and cingulate-anxiety structures across Days 2-8, a significant inverse relationship (r = −0.65, p = 0.0004) was observed between these two functional interactions such that increased cingulate-DMN connectivity corresponded to decreased cingulate anxiety network connectivity. This investigation demonstrates that the cingulate is an important component of both the rodent DMN-like and anxiety networks
Nest Making and Oxytocin Comparably Promote Wound Healing in Isolation Reared Rats
Background: Environmental enrichment (EE) fosters attachment behavior through its effect on brain oxytocin levels in the hippocampus and other brain regions, which in turn modulate the hypothalamic-pituitary axis (HPA). Social isolation and other stressors negatively impact physical healing through their effect on the HPA. Therefore, we reasoned that: 1) provision of a rat EE (nest building with Nestlets®) would improve wound healing in rats undergoing stress due to isolation rearing and 2) that oxytocin would have a similar beneficial effect on wound healing. Methodology/Principal Findings: In the first two experiments, we provided isolation reared rats with either EE or oxytocin and compared their wound healing to group reared rats and isolation reared rats that did not receive Nestlets or oxytocin. In the third experiment, we examined the effect of Nestlets on open field locomotion and immediate early gene (IEG) expression. We found that isolation reared rats treated with Nestlets a) healed significantly better than without Nestlets, 2) healed at a similar rate to rats treated with oxytocin, 3) had decreased hyperactivity in the open field test, and 4) had normalized IEG expression in brain hippocampus. Conclusions/Significance: This study shows that when an EE strategy or oxytocin is given to isolation reared rats, the peripheral stress response, as measured by burn injury healing, is decreased. The findings indicate an association between the effect of nest making on wound healing and administration of the pro-bonding hormone oxytocin. Further elucidation of this animal model should lead to improved understanding of how EE strategies can ameliorate poor wound healing and other symptoms that result from isolation stress
Robust Reproducible Resting State Networks in the Awake Rodent Brain
Resting state networks (RSNs) have been studied extensively with functional MRI in humans in health and disease to reflect brain function in the un-stimulated state as well as reveal how the brain is altered with disease. Rodent models of disease have been used comprehensively to understand the biology of the disease as well as in the development of new therapies. RSN reported studies in rodents, however, are few, and most studies are performed with anesthetized rodents that might alter networks and differ from their non-anesthetized state. Acquiring RSN data in the awake rodent avoids the issues of anesthesia effects on brain function. Using high field fMRI we determined RSNs in awake rats using an independent component analysis (ICA) approach, however, ICA analysis can produce a large number of components, some with biological relevance (networks). We further have applied a novel method to determine networks that are robust and reproducible among all the components found with ICA. This analysis indicates that 7 networks are robust and reproducible in the rat and their putative role is discussed
Endocannabinoid Regulation of Acute and Protracted Nicotine Withdrawal: Effect of FAAH Inhibition
Evidence shows that the endocannabinoid system modulates the addictive properties of nicotine. In the present study, we hypothesized that spontaneous withdrawal resulting from removal of chronically implanted transdermal nicotine patches is regulated by the endocannabinoid system. A 7-day nicotine dependence procedure (5.2 mg/rat/day) elicited occurrence of reliable nicotine abstinence symptoms in Wistar rats. Somatic and affective withdrawal signs were observed at 16 and 34 hours following removal of nicotine patches, respectively. Further behavioral manifestations including decrease in locomotor activity and increased weight gain also occurred during withdrawal. Expression of spontaneous nicotine withdrawal was accompanied by fluctuation in levels of the endocannabinoid anandamide (AEA) in several brain structures including the amygdala, the hippocampus, the hypothalamus and the prefrontal cortex. Conversely, levels of 2-arachidonoyl-sn-glycerol were not significantly altered. Pharmacological inhibition of fatty acid amide hydrolase (FAAH), the enzyme responsible for the intracellular degradation of AEA, by URB597 (0.1 and 0.3 mg/kg, i.p.), reduced withdrawal-induced anxiety as assessed by the elevated plus maze test and the shock-probe defensive burying paradigm, but did not prevent the occurrence of somatic signs. Together, the results indicate that pharmacological strategies aimed at enhancing endocannabinoid signaling may offer therapeutic advantages to treat the negative affective state produced by nicotine withdrawal, which is critical for the maintenance of tobacco use
Administration of Thimerosal to Infant Rats Increases Overflow of Glutamate and Aspartate in the Prefrontal Cortex: Protective Role of Dehydroepiandrosterone Sulfate
Thimerosal, a mercury-containing vaccine preservative, is a suspected factor in the etiology of neurodevelopmental disorders. We previously showed that its administration to infant rats causes behavioral, neurochemical and neuropathological abnormalities similar to those present in autism. Here we examined, using microdialysis, the effect of thimerosal on extracellular levels of neuroactive amino acids in the rat prefrontal cortex (PFC). Thimerosal administration (4 injections, i.m., 240 μg Hg/kg on postnatal days 7, 9, 11, 15) induced lasting changes in amino acid overflow: an increase of glutamate and aspartate accompanied by a decrease of glycine and alanine; measured 10–14 weeks after the injections. Four injections of thimerosal at a dose of 12.5 μg Hg/kg did not alter glutamate and aspartate concentrations at microdialysis time (but based on thimerosal pharmacokinetics, could have been effective soon after its injection). Application of thimerosal to the PFC in perfusion fluid evoked a rapid increase of glutamate overflow. Coadministration of the neurosteroid, dehydroepiandrosterone sulfate (DHEAS; 80 mg/kg; i.p.) prevented the thimerosal effect on glutamate and aspartate; the steroid alone had no influence on these amino acids. Coapplication of DHEAS with thimerosal in perfusion fluid also blocked the acute action of thimerosal on glutamate. In contrast, DHEAS alone reduced overflow of glycine and alanine, somewhat potentiating the thimerosal effect on these amino acids. Since excessive accumulation of extracellular glutamate is linked with excitotoxicity, our data imply that neonatal exposure to thimerosal-containing vaccines might induce excitotoxic brain injuries, leading to neurodevelopmental disorders. DHEAS may partially protect against mercurials-induced neurotoxicity
Lack of Evidence for Neonatal Misoprostol Neurodevelopmental Toxicity in C57BL6/J Mice
Misoprostol is a synthetic analogue of prostaglandin E1 that is administered to women at high doses to induce uterine contractions for early pregnancy termination and at low doses to aid in cervical priming during labor. Because of the known teratogenic effects of misoprostol when given during gestation and its effects on axonal growth in vitro, we examined misoprostol for its potential as a neurodevelopmental toxicant when administered to neonatal C57BL6/J mice. Mice were injected subcutaneously (s.c.) with 0.4, 4 or 40 µg/kg misoprostol on postnatal day 7, the approximate developmental stage in mice of human birth, after which neonatal somatic growth, and sensory and motor system development were assessed. These doses were selected to span the range of human exposure used to induce labor. In addition, adult mice underwent a battery of behavioral tests relevant to neurodevelopmental disorders such as autism including tests for anxiety, stereotyped behaviors, social communication and interactions, and learning and memory. No significant effects of exposure were found for any measure of development or behavioral endpoints. In conclusion, the results of the present study in C57BL/6J mice do not provide support for neurodevelopmental toxicity after misoprostol administration approximating human doses and timed to coincide with the developmental stage of human birth
Age-Related Impairment of Ultrasonic Vocalization in Tau.P301L Mice: Possible Implication for Progressive Language Disorders
Tauopathies, including Alzheimer's Disease, are the most frequent neurodegenerative diseases in elderly people and cause various cognitive, behavioural and motor defects, but also progressive language disorders. For communication and social interactions, mice produce ultrasonic vocalization (USV) via expiratory airflow through the larynx. We examined USV of Tau.P301L mice, a mouse model for tauopathy expressing human mutant tau protein and developing cognitive, motor and upper airway defects.At age 4-5 months, Tau.P301L mice had normal USV, normal expiratory airflow and no brainstem tauopathy. At age 8-10 months, Tau.P301L mice presented impaired USV, reduced expiratory airflow and severe tauopathy in the periaqueductal gray, Kolliker-Fuse and retroambiguus nuclei. Tauopathy in these nuclei that control upper airway function and vocalization correlates well with the USV impairment of old Tau.P301L mice.In a mouse model for tauopathy, we report for the first time an age-related impairment of USV that correlates with tauopathy in midbrain and brainstem areas controlling vocalization. The vocalization disorder of old Tau.P301L mice could be, at least in part, reminiscent of language disorders of elderly suffering tauopathy
- …
