49 research outputs found

    Weather, disease, and wheat breeding effects on Kansas wheat varietal yields, 1985 to 2011.

    Get PDF
    Wheat (Triticum aestivum L.) yields in Kansas have increased due to wheat breeding and improved agronomic practices, but are subject to climate and disease challenges. The objective of this research is to quantify the impact of weather, disease, and genetic improvement on wheat yields of varieties grown in 11 locations in Kansas from 1985 to 2011. Wheat variety yield data from Kansas performance tests were matched with comprehensive location-specific disease and weather data, including seasonal precipitation, monthly air temperature, air temperature and solar radiation around anthesis, and vapor pressure deficit (VPD). The results show that wheat breeding programs increased yield by 34 kg ha⁻¹ yr⁻¹. From 1985 through 2011, wheat breeding increased average wheat yields by 917 kg ha⁻¹, or 27% of total yield. Weather was found to have a large impact on wheat yields. Simulations demonstrated that a 1°C increase in projected mean temperature was associated with a decrease in wheat yields of 715 kg ha⁻¹, or 21%. Weather, diseases, and genetics all had significant impacts on wheat yields in 11 locations in Kansas during 1985 to 2011

    Enhancement of the magnetic anisotropy of nanometer-sized Co clusters: influence of the surface and of the inter-particle interactions

    Full text link
    We study the magnetic properties of spherical Co clusters with diameters between 0.8 nm and 5.4 nm (25 to 7500$ atoms) prepared by sequential sputtering of Co and Al2O3. The particle size distribution has been determined from the equilibrium susceptibility and magnetization data and it is compared to previous structural characterizations. The distribution of activation energies was independently obtained from a scaling plot of the ac susceptibility. Combining these two distributions we have accurately determined the effective anisotropy constant Keff. We find that Keff is enhanced with respect to the bulk value and that it is dominated by a strong anisotropy induced at the surface of the clusters. Interactions between the magnetic moments of adjacent layers are shown to increase the effective activation energy barrier for the reversal of the magnetic moments. Finally, this reversal is shown to proceed classically down to the lowest temperature investigated (1.8 K).Comment: 13 figures submitted to Phys. Rev.

    Adsorption of mono- and multivalent cat- and anions on DNA molecules

    Get PDF
    Adsorption of monovalent and multivalent cat- and anions on a deoxyribose nucleic acid (DNA) molecule from a salt solution is investigated by computer simulation. The ions are modelled as charged hard spheres, the DNA molecule as a point charge pattern following the double-helical phosphate strands. The geometrical shape of the DNA molecules is modelled on different levels ranging from a simple cylindrical shape to structured models which include the major and minor grooves between the phosphate strands. The densities of the ions adsorbed on the phosphate strands, in the major and in the minor grooves are calculated. First, we find that the adsorption pattern on the DNA surface depends strongly on its geometrical shape: counterions adsorb preferentially along the phosphate strands for a cylindrical model shape, but in the minor groove for a geometrically structured model. Second, we find that an addition of monovalent salt ions results in an increase of the charge density in the minor groove while the total charge density of ions adsorbed in the major groove stays unchanged. The adsorbed ion densities are highly structured along the minor groove while they are almost smeared along the major groove. Furthermore, for a fixed amount of added salt, the major groove cationic charge is independent on the counterion valency. For increasing salt concentration the major groove is neutralized while the total charge adsorbed in the minor groove is constant. DNA overcharging is detected for multivalent salt. Simulations for a larger ion radii, which mimic the effect of the ion hydration, indicate an increased adsorbtion of cations in the major groove.Comment: 34 pages with 14 figure

    Effective interaction between helical bio-molecules

    Get PDF
    The effective interaction between two parallel strands of helical bio-molecules, such as deoxyribose nucleic acids (DNA), is calculated using computer simulations of the "primitive" model of electrolytes. In particular we study a simple model for B-DNA incorporating explicitly its charge pattern as a double-helix structure. The effective force and the effective torque exerted onto the molecules depend on the central distance and on the relative orientation. The contributions of nonlinear screening by monovalent counterions to these forces and torques are analyzed and calculated for different salt concentrations. As a result, we find that the sign of the force depends sensitively on the relative orientation. For intermolecular distances smaller than 6A˚6\AA it can be both attractive and repulsive. Furthermore we report a nonmonotonic behaviour of the effective force for increasing salt concentration. Both features cannot be described within linear screening theories. For large distances, on the other hand, the results agree with linear screening theories provided the charge of the bio-molecules is suitably renormalized.Comment: 18 pages, 18 figures included in text, 100 bibliog

    Deficiências de kacronutrientes e de boro em seringueira (Hevea brasiliensis L.)

    Get PDF
    In order to obtain: a) a clear picture of the deficiencies symptoms of N, P, K, Ca, Mg, S and B; b) the lack of the elements on the dry matter production; c) concentration of the macro and micronutrients on the leaves, stems and roots. Young rubber plants (Hevea brasiliensis L.), were cultivated in nutrients solutions, in which one the following elements were omitted at once: N, P, K, Ca, Mg, S and B. Clear out symptoms were obtained for all macronutrients and boron. The growth rate of the rubber plants were drastically affected by lack of N, K followed by other nutrients. The omission of P from the nutrient solution did not affected the growth of the plants. The levels detected by chemical analysis of the leaves from with symptoms of deficiency and without symptoms of deficiency plants were: N% = 1.94 and 3.40: P% =0.14 and 0.25; K% = 0.79 and 2.22; Ca% = 0.59 and 1.28; Mg% = 0.26 and 0.50; S% = 0.10 and 0.10; B ppm = 31-3 and 171.8.Plantas de seringueira (Hevea brasiliensis L.) foram cultivadas em casa de vegetação, em quartzo moído, irrigado com soluções nutritivas, e submetidas aos seguintes tratamentos: completo, omissão de N, omissão de P, omissão de Ca, omissão de Mg, omissão de S e omissão de B, com o objetivo de: (a) obter sintomas de deficiências de macronutrientes e de boro; (b) analisar o crescimento das plantas através da produção de matéria seca; (c) determinar a concentração de macro e micronutrientes nas folhas, caule e raízes das plantas cultivadas nos diversos tratamentos. Os sintomas visuais de deficiência foram identificados e descritos. As plantas foram coletadas e separadas em raiz, caule e folhas, e determinaram-se os teores de macro e micronutrientes . Os resultados mostraram: - foram identificados sintomas de deficiências para todos os tratamentos com omissão de nutrientes (N, P, K, Ca, Mg, S e B); - a omissão de N, K, Mg ou B da solução nutritiva diminuiu o crescimento das plantas; - as concentrações dos elementos nas folhas de plantas com sintomas e sem sintomas de deficiência foram, respectivamente: N% = 1,94 e 3,40; P% = 0,14 e 0,25; K% = 0,79 e 2,22; Ca% = 0,59e 1,28; Mg% = 0,26 e 0,50; S% = 0,10 e 0,10; Bppm = 31 ,3 e 171,8

    Frobenius structures over Hilbert C*-modules

    Get PDF
    We study the monoidal dagger category of Hilbert C*-modules over a commutative C*-algebra from the perspective of categorical quantum mechanics. The dual objects are the finitely presented projective Hilbert C*-modules. Special dagger Frobenius structures correspond to bundles of uniformly finite-dimensional C*-algebras. A monoid is dagger Frobenius over the base if and only if it is dagger Frobenius over its centre and the centre is dagger Frobenius over the base. We characterise the commutative dagger Frobenius structures as finite coverings, and give nontrivial examples of both commutative and central dagger Frobenius structures. Subobjects of the tensor unit correspond to clopen subsets of the Gelfand spectrum of the C*-algebra, and we discuss dagger kernels.Comment: 35 page

    Performance of rice grown after upland crops and fallow in the humid tropics

    No full text
    corecore