297 research outputs found

    Physiological indicators and yield of the Chinese cabbage cultivated at different soil water tensions

    Get PDF
    The development and yield of Chinese cabbage is influenced by soil moisture. The objective of this study was to evaluate the physiological indicators, development, and yield of Chinese cabbage (Brassica rapa subsp. pekinensis (Lour.) Rupr.) grown at different soil water tension ranges. Two experiments were conducted (2016–2017) in the Olericulture Sector of the Federal University of Technology of Paraná. Two cultivars of the Chinese cabbage, Eikoo and Kinjitsu, and four soil water tension ranges 13–17, 23–27, 33–37, and 43–47 kPa were studied. Eikoo presented higher relative chlorophyll index, photosynthesis, and fresh leaf mass than did Kinjitsu. Physiological indicators transpiration (5.8 mmol H2O m-2 s -1 ), photosynthesis (14.5 µmol CO2 m-2 s -1 ), stomatal conductance (0.31 mol H2O m-2 s -1 ), and WUE (39.4 kg m-3 ) were higher at 13–17 kPa soil water tension. Soil water tension ranges with high water restrictions reduced the fresh leaf mass of both cultivars. Fresh leaf mass decreased by 236.2 and 191.7 g plant-1 in the highest soil water tension range in 2016 and 2017, respectively, when compared with the fresh leaf mass at the 13–17 kPa tension range. The lowest water consumption was observed at the 13–17 kPa tension range. The year 2017 resulted in higher internal CO2 concentration, transpiration rate, fresh leaf mass, number of irrigations and water consumption compared to the year 2016. Thus, the irrigation regime for the most optimal Chinese cabbage cultivation should maintain the soil water tension range at 13–17 kPa

    Search for charginos in e+e- interactions at sqrt(s) = 189 GeV

    Full text link
    An update of the searches for charginos and gravitinos is presented, based on a data sample corresponding to the 158 pb^{-1} recorded by the DELPHI detector in 1998, at a centre-of-mass energy of 189 GeV. No evidence for a signal was found. The lower mass limits are 4-5 GeV/c^2 higher than those obtained at a centre-of-mass energy of 183 GeV. The (\mu,M_2) MSSM domain excluded by combining the chargino searches with neutralino searches at the Z resonance implies a limit on the mass of the lightest neutralino which, for a heavy sneutrino, is constrained to be above 31.0 GeV/c^2 for tan(beta) \geq 1.Comment: 22 pages, 8 figure

    Hadronization properties of b quarks compared to light quarks in e+e- -> q qbar from 183 to 200 GeV

    Full text link
    The DELPHI detector at LEP has collected 54 pb^{-1} of data at a centre-of-mass energy around 183 GeV during 1997, 158 pb^{-1} around 189 GeV during 1998, and 187 pb^{-1} between 192 and 200 GeV during 1999. These data were used to measure the average charged particle multiplicity in e+e- -> b bbar events, _{bb}, and the difference delta_{bl} between _{bb} and the multiplicity, _{ll}, in generic light quark (u,d,s) events: delta_{bl}(183 GeV) = 4.55 +/- 1.31 (stat) +/- 0.73 (syst) delta_{bl}(189 GeV) = 4.43 +/- 0.85 (stat) +/- 0.61 (syst) delta_{bl}(200 GeV) = 3.39 +/- 0.89 (stat) +/- 1.01 (syst). This result is consistent with QCD predictions, while it is inconsistent with calculations assuming that the multiplicity accompanying the decay of a heavy quark is independent of the mass of the quark itself.Comment: 13 pages, 2 figure
    corecore