44 research outputs found

    Star-forming early-type galaxies and quiescent late-type galaxies in the local Universe

    Get PDF
    Aims: The general consensus is that late-type galaxies undergo intense star-formation, activity while early-type galaxies are mostly inactive. We question this general rule and investigate the existence of star-forming early-type and quiescent late-type galaxies in the local Universe. By computing the physical properties of these galaxies and by using information on their structural properties as well as the density of their local environment, we seek to understand the differences from their `typical' counterparts. Methods: We made use of the multi-wavelength photometric data (from the ultraviolet to the sub-millimetre), for 2209 morphologically classified galaxies in the Galaxy And Mass Assembly survey. Furthermore, we separated the galaxies into subsets of star-forming and quiescent based on their dominant ionising process, making use of established criteria based on the WHα width and the [NII/Hα] ratio. Taking advantage of the spectral energy distribution fitting code CIGALE, we derived galaxy properties, such as the stellar mass, dust mass, and star-formation rate, and we also estimated the unattenuated and the dust-absorbed stellar emission, for both the young (≤200 Myr) and old (> 200 Myr) stellar populations. Results: We find that about 47% of E/S0 galaxies in our sample show ongoing star-formation activity and 8% of late-type galaxies are quiescent. The star-forming elliptical galaxies, together with the little blue spheroids, constitute a population that follows the star-forming main sequence of spiral galaxies very well. The fraction of the luminosity originating from young stars in the star-forming early-type galaxies is quite substantial (∼25%) and similar to that of the star-forming late-type galaxies. The stellar luminosity absorbed by the dust (and used to heat the dust grains) is highest in star-forming E/S0 galaxies (an average of 35%) followed by star-forming Sa-Scd galaxies (27%) with this fraction becoming significantly smaller for their quiescent analogues (6% and 16%, for E/S0 and Sa-Scd, respectively). Star-forming and quiescent E/S0 galaxies donate quite different fractions of their young stellar luminosities to heat up the dust grains (74% and 36%, respectively), while these fractions are very similar for star-forming and quiescent Sa-Scd galaxies (59% and 60%, respectively). Investigating possible differences between star-forming and quiescent galaxies, we find that the intrinsic (unattenuated) shape of the SED of the star-forming galaxies is, on average, very similar for all morphological types. Concerning their structural parameters, quiescent galaxies tend to show larger values of the r-band Sérsic index and larger effective radii (compared to star-forming galaxies). Finally, we find that star-forming galaxies preferably reside in lower density environments compared to the quiescent ones, which exhibit a higher percentage of sources being members of groups

    Uncovering the MIR emission of quiescent galaxies with JWSTJWST

    Get PDF
    We present a study of the mid-IR (MIR) emission of quiescent galaxies (QGs) beyond the local universe. Using deep JWSTJWST imaging in the SMACS-0723 cluster field we identify a mass limited (M>109M_{*} >10^{9}M_{\odot}) sample of intermediate redshift QGs (0.2<z<0.70.2<z<0.7) and perform modeling of their rest-frame UV to MIR photometry. We find that QGs exhibit a range of MIR spectra that are composed of a stellar continuum and a dust component that is 1-2 orders of magnitude fainter to that of star-forming galaxies. The observed scatter in the MIR spectra, especially at λrest>5μ\lambda_{\rm rest} > 5 \mum, can be attributed to different dust continuum levels and/or the presence of Polycyclic Aromatic Hydrocarbons (PAHs) features. The latter would indicate enhanced 11.3- and 12.7 μ\mum PAHs strengths with respect to those at 6.2- and 7.7μ \mum, consistent with the observed spectra of local ellipticals and indicative of soft radiation fields. Finally, we augment the average UV-to-MIR spectrum of the population with cold dust and gas emission in the far-IR/mm and construct a panchromatic UV-to-radio SED that can serve as a template for the future exploration of the interstellar medium of z>0z>0 QGs with ALMA and JWSTJWST.Comment: The panchromatic QG SED has been made publicly available at http://www.georgiosmagdis.com/softwar

    Analysis of protein-receptor interactions on an example of leptin-leptin receptor interaction using the resonant recognition model

    No full text
    Obesity is a medical condition in which excess body fat may have a negative effect on health and lifestyle, and it is becoming an increasing problem within modern society. Leptin is the key protein that regulates body energy balance by inhibiting hunger, and it could potentially be used in treatment of obesity and overweight. Here, we applied our own Resonant Recognition Model, which is capable of analyzing the selectivity of any protein-receptor interaction on an example of leptin-leptin receptor. We have identified a specific characteristic parameter for leptin activity through the leptin receptor, and this parameter could be used in development of new treatments for obesity

    Explanation of osteoblastic differentiation of stem cells by photo biomodulation using the resonant recognition model

    No full text
    Differentiation of stem cells into different tissues is a promising approach to treat a large number of diseases, as well as for tissue transplantation and repair. It has been shown that parathyroid hormone, similarly to stromal self-derived factor, and the radiation of specific electromagnetic frequencies of blue and green light, can encourage stem cell differentiation into osteoblasts. Here, we analysed parathyroid hormone, its receptor and stromal self-derived factor using the Resonant Recognition Model, which proposes that protein function is based on specific frequencies of electromagnetic radiation within ultra-violet, visible, infra-red and far infra-red light. The purpose of this research is to predict the characteristic frequencies related to parathyroid hormone activities, particularly differentiation of stem cells into osteoblasts. We have found that the most effective wavelength for stem cell differentiation would be 502 nm, which is between 420 nm and 540 nm, already experimentally proven to be effective in stimulating osteoblast differentiation. Thus, we propose that wavelength radiation of 502 nm will be even more efficient for differentiation of stem cells into osteoblasts
    corecore