3,689 research outputs found

    Hot-water aquifer storage: A field test

    Get PDF
    The basic water injection cycle used in a large-scale field study of heat storage in a confined aquifer near Mobile, Alabama is described. Water was pumped from an upper semi-confined aquifer, passed through a boiler where it was heated to a temperature of about 55 C, and injected into a medium sand confined aquifer. The injection well has a 6-inch (15-cm) partially-penetrating steel screen. The top of the storage formation is about 40 meters below the surface and the formation thickness is about 21 meters. In the first cycle, after a storage period of 51 days, the injection well was pumped until the temperature of the recovered water dropped to 33 c. At that point 55,300 cubic meters of water had been withdrawn and 66 percent of the injected energy had been recovered. The recovery period for the second cycle continued until the water temperature was 27.5 C and 100,100 cubic meters of water was recovered. At the end of the cycle about 90 percent of the energy injected during the cycle had been recovered

    High-density correlation energy expansion of the one-dimensional uniform electron gas

    Full text link
    We show that the expression of the high-density (i.e small-rsr_s) correlation energy per electron for the one-dimensional uniform electron gas can be obtained by conventional perturbation theory and is of the form \Ec(r_s) = -\pi^2/360 + 0.00845 r_s + ..., where rsr_s is the average radius of an electron. Combining these new results with the low-density correlation energy expansion, we propose a local-density approximation correlation functional, which deviates by a maximum of 0.1 millihartree compared to the benchmark DMC calculations.Comment: 7 pages, 2 figures, 3 tables, accepted for publication in J. Chem. Phy

    Analyzing the Impact of Changes in Trade and Domestic Policies: The Case of the Soybean Complex

    Get PDF
    This study analyzes the impacts of domestic and trade policy changes on the soybean complex using a Stochastic Equilibrium Displacement Model (SEDM). Three different policies, Loan Deficiency Payments (LDP), transportation costs and export taxes are considered in the analysis. The results indicate that Brazil benefits from a reduction in transportation costs and becomes more competitive in the global soybean market. Brazilian exports of soybeans increase due to relatively lower export prices. However, Brazil gains little improvement in the export competitiveness of the soybean joint products, soybean meal and oil. A lower U.S. LDP rate results in the loss of competitiveness for the United States in the world soybean market. Furthermore, the results show that an Argentine export tax reduction increases soybean exports from Argentina, but it reduces the global supply of soybean meal and soybean oil.International Trade, Loan Deficiency Payment, Soybean, Soybean Joint Products, Stochastic Equilibrium Displacement Model, Transportation Costs, Agricultural and Food Policy, International Relations/Trade,

    Novel properties of the Kohn-Sham exchange potential for open systems: application to the two-dimensional electron gas

    Full text link
    The properties of the Kohn-Sham (KS) exchange potential for open systems in thermodynamical equilibrium, where the number of particles is non-conserved, are analyzed with the Optimized Effective Potential (OEP) method of Density Functional Theory (DFT) at zero temperature. The quasi two-dimensional electron gas (2DEG) is used as an illustrative example. The main findings are that the KS exchange potential builds a significant barrier-like structure under slight population of the second subband, and that both the asymptotic value of the KS exchange potential and the inter-subband energy jump discontinuously at the one-subband (1S) -> two-subband (2S) transition. The results obtained in this system offer new insights on open problems of semiconductors, such as the band-gap underestimation and the band-gap renormalization by photo-excited carriers.Comment: 7 pages, 3 figures, uses epl.cls(included), accepted for publication in Europhysics Letter

    Dielectric control of spin in semiconductor spherical quantum dots

    Get PDF
    The ground state electronic configuration of semiconductor spherical quantum dots populated with different numbers of excess electrons, for different radii and dielectric constants of the embedding medium is calculated and the corresponding phase diagram drawn. To this end, an extension of the spin density functional theory to study systems with variable effective mass and dielectric constant is employed. Our results show that high/low spin configurations can be switched by appropriate changes in the quantum dot embedding environment and suggest the use of the quantum dot spin as a sensor of the dielectric response of medi

    Development of a stratospheric and mesospheric microwave temperature sounder experiment

    Get PDF
    A passive microwave spectrometer system for measuring global atmospheric temperature profiles from 0-75 km altitude was developed and analyzed. The system utilizes 12 channels near the 5 mm wavelength oxygen absorption band and is designed to provide global coverage by scanning perpendicular to the orbital track of a polar orbiting satellite. A significant improvement in the accuracy of theoretical atmospheric microwave transmittance functions was achieved through the development of a first-order approximation to overlapping line theory for the oxygen molecule. This approximation is particularly important in the troposphere and lower stratosphere where pressure-broadening blends nearby lines. Ground-based and aircraft observations of several resonances of stratospheric oxygen generally support the theory. The 23, 25, 29, and 31 atmospheric oxygen lines were measured and the frequencies of several such oxygen lines were measured with improved precision. The polarization and Zeeman splitting of the atmospheric 27 line was also observed

    Thermal energy storage in a confined aquifer: Experimental results

    Get PDF
    This is the published version. Copyright 1979 American Geophysical UnionTo aid in testing the idea of storing thermal energy in aquifers, an experiment was performed by Auburn University in which 54,784 m3 of water was pumped from a shallow supply aquifer, heated to an average temperature of 55°C, and injected into a deeper confined aquifer where the ambient temperature was 20°C. After a storage period of 51 days, 55,345 m3 of water were produced from the confined aquifer. Throughout the experiment, which lasted approximately 6 months, groundwater temperatures were recorded at six depths in each of 10 observation wells, and hydraulic heads were recorded in five observation wells. In order to prevent errors due to thermal convection, most of the observation wells recording temperature had to be backfilled with sand. During the 41-day production period, the temperature of the produced water varied from 55° to 33°C, and 65% of the injected thermal energy was recovered. At no time was an appreciable amount of free thermal convection observed in the storage formation. The dominant heat dissipation mechanisms appeared to be hydrodynamic thermal dispersion and possible mixing of cold and hot water induced by clogging and unclogging of the injection-production well. On the basis of laboratory and field studies, it was concluded that clogging of the injection well, which constituted the major technical problem during the experiment, was caused by the freshwater-sensitive nature of the storage aquifer. Due to the relatively low concentration of cations in the supply water, clay particles would swell, disperse, and migrate until they became trapped in the relatively small pores connecting the larger pores. Surging the pump and back washing the injection well would dislodge the clogging particles and temporarily improve the storage formation permeability. The phenomenon seems largely independent of temperature because it was reproduced in the laboratory with unheated water. It may, however, depend on pore velocity. Future research should be directed toward procedures for selecting storage aquifers that will have minimal susceptibility to clogging and other geochemical problems. Procedures for overcoming such difficulties are needed also because clogging and related phenomena will be more the rule than the exception. Designing an aquifer thermal storage system for maximum energy recovery would involve selecting an appropriate aquifer, analyzing the effects of hydrodynamic thermal dispersion and thermal convection if it is predicted to occur, anticipating geochemical problems, designing the optimum supply-injection-production well configuration and injecting a sufficiently large volume of heated water to realize economies of scale related to increasing volume-surface area ratio

    Screened hybrid functional applied to 3d^0-->3d^8 transition-metal perovskites LaMO3 (M=Sc-Cu): influence of the exchange mixing parameter on the structural, electronic and magnetic properties

    Full text link
    We assess the performance of the Heyd-Scuseria-Ernzerhof (HSE) screened hybrid density functional scheme applied to the perovskite family LaMO3 (M=Sc-Cu) and discuss the role of the mixing parameter alpha (which determines the fraction of exact Hartree-Fock exchange included in the density functional theory (DFT) exchange-correlation functional) on the structural, electronic, and magnetic properties. The physical complexity of this class of compounds, manifested by the largely varying electronic characters (band/Mott-Hubbard/charge-transfer insulators and metals), magnetic orderings, structural distortions (cooperative Jahn-Teller like instabilities), as well as by the strong competition between localization/delocalization effects associated with the gradual filling of the t_2g and e_g orbitals, symbolize a critical and challenging case for theory. Our results indicates that HSE is able to provide a consistent picture of the complex physical scenario encountered across the LaMO3 series and significantly improve the standard DFT description. The only exceptions are the correlated paramagnetic metals LaNiO3 and LaCuO3, which are found to be treated better within DFT. By fitting the ground state properties with respect to alpha we have constructed a set of 'optimum' values of alpha from LaScO3 to LaCuO3: it is found that the 'optimum' mixing parameter decreases with increasing filling of the d manifold (LaScO3: 0.25; LaTiO3 & LaVO3: 0.10-0.15; LaCrO3, LaMnO3, and LaFeO3: 0.15; LaCoO3: 0.05; LaNiO3 & LaCuO3: 0). This trend can be nicely correlated with the modulation of the screening and dielectric properties across the LaMO3 series, thus providing a physical justification to the empirical fitting procedure.Comment: 32 pages, 29 figure

    Density Functional Theory for the Photoionization Dynamics of Uracil

    Full text link
    Photoionization dynamics of the RNA base Uracil is studied in the framework of Density Functional Theory (DFT). The photoionization calculations take advantage of a newly developed parallel version of a multicentric approach to the calculation of the electronic continuum spectrum which uses a set of B-spline radial basis functions and a Kohn-Sham density functional hamiltonian. Both valence and core ionizations are considered. Scattering resonances in selected single-particle ionization channels are classified by the symmetry of the resonant state and the peak energy position in the photoelectron kinetic energy scale; the present results highlight once more the site specificity of core ionization processes. We further suggest that the resonant structures previously characterized in low-energy electron collision experiments are partly shifted below threshold by the photoionization processes. A critical evaluation of the theoretical results providing a guide for future experimental work on similar biosystems

    Aquifer thermal energy storage: An attempt to counter free thermal convection

    Get PDF
    This is the published version. Copyright 1983 American Geophysical UnionIn previous Aquifer Thermal Energy Storage (ATES) experiments, appreciable free thermal convection was observed. In an attempt to counter the detrimental effects of convection, a dual recovery well system was constructed at the Mobile site and a third injection-storage-recovery cycle performed. Using a partially penetrating well, cycle 3-3 injection began on April 7, 1982. A total of 56,680 m3 of 79°C water were injected. After 57 days of storage, production began with a dual recovery well system. Due to the dominating effect of nonhomogeneities, the dual well system did not work particularly well, and a recovery factor of 0.42 was achieved. The degree of aquifer heterogeneity at the location of the present experiments was not apparent during previous experiments at a location only 109 m away, although pumping tests indicated similar values of transmissivity. Therefore aquifers with the same transmissivity can behave quite differently in a thermal sense. Heat conduction to the upper aquitard was a major energy loss mechanism. Water sample analyses indicated that there were no important changes in the chemical constituents during the third set of experiments. There was a 19% increase in total dissolved solids. At the end of injection, the land surface near the injection well had risen 1.39 cm with respect to bench marks located 70 m away
    • …
    corecore