The properties of the Kohn-Sham (KS) exchange potential for open systems in
thermodynamical equilibrium, where the number of particles is non-conserved,
are analyzed with the Optimized Effective Potential (OEP) method of Density
Functional Theory (DFT) at zero temperature. The quasi two-dimensional electron
gas (2DEG) is used as an illustrative example. The main findings are that the
KS exchange potential builds a significant barrier-like structure under slight
population of the second subband, and that both the asymptotic value of the KS
exchange potential and the inter-subband energy jump discontinuously at the
one-subband (1S) -> two-subband (2S) transition. The results obtained in this
system offer new insights on open problems of semiconductors, such as the
band-gap underestimation and the band-gap renormalization by photo-excited
carriers.Comment: 7 pages, 3 figures, uses epl.cls(included), accepted for publication
in Europhysics Letter