77 research outputs found
Case-Control study of Firefighters with documented positive tuberculin skin test results using Quantiferon-TB testing in comparison with Firefighters with negative tuberculin skin test results
BACKGROUND: Phoenix Firefighters have had abnormally high rates of tuberculin skin test (TBST) results on medical surveillance. The objectives of this study were to evaluate our firefighters using QuantiFERON-TB (QFT), comparing the results to their TBST results. METHODS: Using QFT results obtained during the study, we compared previously positive TBST responders (Cases) to negative responders (Controls). We also compared both groups for QFT results for Mycobacterium avium (MA) exposure. RESULTS: QFT effectively monitored our working population. 12.9% of the 148 cases, and 3.2% of the 220 controls had a positive QFT result. Another 14.8% of cases and 4.5% of controls had conditionally positive QFT results. There was an unusually high rate of MA response on QFT testing in both groups. CONCLUSION: Phoenix Firefighters have a higher than expected TBST and QFT results, which cannot be explained by the increased MA rate. The decreased level of QFT positivity in comparison to TBST results may indicate a considerable false positive TBST rate. The QFT offers many advantages as a surveillance method over TBST in exposed worker populations
The Scales Project, a cross-national dataset on the interpretation of thermal perception scales
Thermal discomfort is one of the main triggers for occupants’ interactions with components of the built environment such as adjustments of thermostats and/or opening windows and strongly related to the energy use in buildings. Understanding causes for thermal (dis-)comfort is crucial for design and operation of any type of building. The assessment of human thermal perception through rating scales, for example in post-occupancy studies, has been applied for several decades; however, long-existing assumptions related to these rating scales had been questioned by several researchers. The aim of this study was to gain deeper knowledge on contextual influences on the interpretation of thermal perception scales and their verbal anchors by survey participants. A questionnaire was designed and consequently applied in 21 language versions. These surveys were conducted in 57 cities in 30 countries resulting in a dataset containing responses from 8225 participants. The database offers potential for further analysis in the areas of building design and operation, psycho-physical relationships between human perception and the built environment, and linguistic analyses
Recommended from our members
The relationship between stimulus intensity and response amplitude for the photopic negative response of the flash electroretinogram
The aim of this study was to investigate the relationship between stimulus intensity and response amplitude for the photopic negative response (PhNR) of the flash ERG. Specific aims were (i) to determine whether a generalized Naka-Rushton function provided a good fit to the intensity-response data and (ii) to determine the variability of the parameters of the best-fitting Naka-Rushton models. Electroretinograms were recorded in 18 participants, on two occasions, using both DTL fibre and skin active electrodes, in response to Ganzfeld red stimuli (Lee filter "terry red") ranging in stimulus strength from -1.30 to 0.53 log cd.s.m(-2) (0.28-2.11 log phot td.s) presented over a steady blue background (Schott glass filter BG28; 3.9 log scot td). PhNR amplitude was measured from b-wave peak and from pre-stimulus baseline. The Naka-Rushton function was fitted to all intensity-response data, and parameters, 'n', 'Vmax' and 'K' were obtained. Coefficients of variation (CoV), and inter-ocular and inter-session limits of agreement (LoA) were calculated for both Naka-Rushton parameters. A generalized Naka-Rushton function was found to provide a good fit to the intensity-response data, except at the highest stimulus intensity, where a reduction in amplitude occurred in many individuals. The 'Vmax' parameter was less variable than 'K' for all intensity-response data. Variability was lower for DTL than skin electrodes, and for peak-to-trough PhNR measurements, compared to baseline-to-trough. This study has demonstrated for the first time that the Naka-Rushton model provides a useful means of quantifying the intensity-response relationship of the PhNR
Evaluating assumptions of scales for subjective assessment of thermal environments – Do laypersons perceive them the way, we researchers believe?
People's subjective response to any thermal environment is commonly investigated by using rating scales describing the degree of thermal sensation, comfort, and acceptability. Subsequent analyses of results collected in this way rely on the assumption that specific distances between verbal anchors placed on the scale exist and that relationships between verbal anchors from different dimensions that are assessed (e.g. thermal sensation and comfort) do not change. Another inherent assumption is that such scales are independent of the context in which they are used (climate zone, season, etc.). Despite their use worldwide, there is indication that contextual differences influence the way the scales are perceived and therefore question the reliability of the scales’ interpretation. To address this issue, a large international collaborative questionnaire study was conducted in 26 countries, using 21 different languages, which led to a dataset of 8225 questionnaires. Results, analysed by means of robust statistical techniques, revealed that only a subset of the responses are in accordance with the mentioned assumptions. Significant differences appeared between groups of participants in their perception of the scales, both in relation to distances of the anchors and relationships between scales. It was also found that respondents’ interpretations of scales changed with contextual factors, such as climate, season, and language. These findings highlight the need to carefully consider context-dependent factors in interpreting and reporting results from thermal comfort studies or post-occupancy evaluations, as well as to revisit the use of rating scales and the analysis methods used in thermal comfort studies to improve their reliability
The Scales Project, a cross-national dataset on the interpretation of thermal perception scales
Thermal discomfort is one of the main triggers for occupants' interactions with components of the built environment such as adjustments of thermostats and/or opening windows and strongly related to the energy use in buildings. Understanding causes for thermal (dis-)comfort is crucial for design and operation of any type of building. The assessment of human thermal perception through rating scales, for example in post-occupancy studies, has been applied for several decades; however, long-existing assumptions related to these rating scales had been questioned by several researchers. The aim of this study was to gain deeper knowledge on contextual influences on the interpretation of thermal perception scales and their verbal anchors by survey participants. A questionnaire was designed and consequently applied in 21 language versions. These surveys were conducted in 57 cities in 30 countries resulting in a dataset containing responses from 8225 participants. The database offers potential for further analysis in the areas of building design and operation, psycho-physical relationships between human perception and the built environment, and linguistic analyses
Specific Roles of Akt iso Forms in Apoptosis and Axon Growth Regulation in Neurons
Akt is a member of the AGC kinase family and consists of three isoforms. As one of the major regulators of the class I PI3 kinase pathway, it has a key role in the control of cell metabolism, growth, and survival. Although it has been extensively studied in the nervous system, we have only a faint knowledge of the specific role of each isoform in differentiated neurons. Here, we have used both cortical and hippocampal neuronal cultures to analyse their function. We characterized the expression and function of Akt isoforms, and some of their substrates along different stages of neuronal development using a specific shRNA approach to elucidate the involvement of each isoform in neuron viability, axon development, and cell signalling. Our results suggest that three Akt isoforms show substantial compensation in many processes. However, the disruption of Akt2 and Akt3 significantly reduced neuron viability and axon length. These changes correlated with a tendency to increase in active caspase 3 and a decrease in the phosphorylation of some elements of the mTORC1 pathway. Indeed, the decrease of Akt2 and more evident the inhibition of Akt3 reduced the expression and phosphorylation of S6. All these data indicate that Akt2 and Akt3 specifically regulate some aspects of apoptosis and cell growth in cultured neurons and may contribute to the understanding of mechanisms of neuron death and pathologies that show deregulated growth
- …