95 research outputs found
Modulating calcium phosphate formation using CO2 laser engineering of a polymeric material
The use of simulated body fluid (SBF) is widely used as a screening technique to assess the ability of materials to promote calcium phosphate formation. This paper details the use of CO2 laser surface treatment of nylon® 6,6 to modulate calcium phosphate formation following immersion in SBF for 14 days. Through white light interferometry (WLI) it was determined that the laser surface processing gave rise to maximum Ra and Sa parameters of 1.3 and 4.4 µm, respectively. The use of X-ray photoelectron spectroscopy (XPS) enabled a maximum increase in surface oxygen content of 5.6 %at. to be identified. The laser-induced surface modifications gave rise to a modulation in the wettability characteristics such that the contact angle, θ, decreased for the whole area processed samples, as expected, and increased for the patterned samples. The increase in θ can be attributed to a transition in wetting nature to a mixed-state wetting regime. It was seen for all samples that calcium phosphate formed on each surface following 14 days. The largest increase in mass, Δg, owed to calcium phosphate formation, was brought about by the whole area processed sample irradiated with a fluence of 51 Jcm-2. No correlation between the calcium phosphate formation and the laser patterned surface properties was determined due to the likely affect of the mixed-state wetting regime. Strong correlations between θ, the surface energy parameters and the calcium phosphate formation for the whole area processed samples allow one to realize the potential for this surface treatment technique in predicting the bone forming ability of laser processed materials
On the effects of using CO2 and F2 lasers to modify the wettability of a polymeric biomaterial.
Enhancement of the surface properties of a material by means of laser radiation has been amply demonstrated previously. In this work a comparative study for the surface modification of nylon 6,6 has been conducted in order to vary the wettability characteristics using CO2 and excimer lasers. This was done by producing 50 μm spaced (with depths between 1 and 10 μm) trench-like patterns using various laser parameters such as varying the laser power for the CO2 laser and number of pulses for the excimer laser. Topographical changes were analysed using optical microscopy and white light interferometry which indicated that both laser systems can be implemented for modifying the topography of nylon 6,6. Variations in the surface chemistry were evaluated using energy-dispersive X-ray spectroscopy and x-ray photoelectron spectroscopy analysis and showed that the O2 increased by up to 1.5% At. and decreased by up to 1.6% At. for the CO2 and F2 laser patterned samples, respectively. Modification of the wettability characteristics was quantified by measuring the advancing contact angle, which was found to increase in all instances for both laser systems. Emery paper roughened samples were also analysed in the same manner to determine that the topographical pattern played a major role in the wettability characteristics of nylon 6,6. From this, it is proposed that the increase in contact angle for the laser processed samples is due to a mixed intermediate state wetting regime owed to the periodic surface roughness brought about by the laser induced trench-like topographical patterns
Interaction of CO2 laser-modified nylon with osteoblast cells in relation to wettability
It has been amply demonstrated previously that CO2 lasers hold the ability to surface modify various polymers. In addition, it has been observed that these surface enhancements can augment the biomimetic nature of the laser irradiated materials. This research has employed a CO2 laser marker to produce trench and hatch topographical patterns with peak heights of around 1 μm on the surface of nylon 6,6. The patterns generated have been analysed using white light interferometery, optical microscopy and X-ray photoelectron spectroscopy was employed to determine the surface oxygen content. Contact angle measurements were used to characterize each sample in terms of wettability. Generally, it was seen that as a result of laser processing the contact angle, surface roughness and surface oxygen content increased whilst the apparent polar and total surface energies decreased. The increase in contact angle and reduction in surface energy components was found to be on account of a mixed intermediate state wetting regime owing to the change in roughness due to the induced topographical patterns. To determine the biomimetic nature of the modified and as-received control samples each one was seeded with 2×104 cells/ml normal human osteoblast cells and observed after periods of 24 hours and 4 days using optical microscopy and SEM to determine mean cell cover densities and variations in cell morphology. In addition a haeymocytometer was used to show that the cell count for the laser patterned samples had increased by up to a factor of 1.5 compared to the as-received control sample after 4 days of incubation. Significantly, it was determined that all laser-induced patterns gave rise to better cell response in comparison to the as-received control sample studied due to increased preferential cell growth on those surfaces with increased surface roughness
Observation of a Narrow Resonance of Mass 2.46 GeV/c^2 Decaying to D_s^*+ pi^0 and Confirmation of the D_sJ^* (2317) State
Using 13.5 inverse fb of e+e- annihilation data collected with the CLEO II
detector we have observed a narrow resonance in the Ds*+pi0 final state, with a
mass near 2.46 GeV. The search for such a state was motivated by the recent
discovery by the BaBar Collaboration of a narrow state at 2.32 GeV, the
DsJ*(2317)+ that decays to Ds+pi0. Reconstructing the Ds+pi0 and Ds*+pi0 final
states in CLEO data, we observe peaks in both of the corresponding
reconstructed mass difference distributions, dM(Dspi0)=M(Dspi0)-M(Ds) and
dM(Ds*pi0)=M(Ds*pi0)-M(Ds*), both of them at values near 350 MeV. We interpret
these peaks as signatures of two distinct states, the DsJ*(2317)+ plus a new
state, designated as the DsJ(2463)+. Because of the similar dM values, each of
these states represents a source of background for the other if photons are
lost, ignored or added. A quantitative accounting of these reflections confirms
that both states exist. We have measured the mean mass differences
= 350.0 +/- 1.2 [stat] +/- 1.0 [syst] MeV for the DsJ*(2317) state, and
= 351.2 +/- 1.7 [stat] +/- 1.0 [syst] MeV for the new DsJ(2463)+
state. We have also searched, but find no evidence, for decays of the two
states via the channels Ds*+gamma, Ds+gamma, and Ds+pi+pi-. The observations of
the two states at 2.32 and 2.46 GeV, in the Ds+pi0 and Ds*+pi0 decay channels
respectively, are consistent with their interpretations as (c anti-strange)
mesons with orbital angular momentum L=1, and spin-parities of 0+ and 1+.Comment: 16 pages postscript, also available through
http://w4.lns.cornell.edu/public/CLNS, version to be published in Physical
Review D; minor modifications and fixes to typographical errors, plus an
added section on production properties. The main results are unchanged; they
supersede those reported in hep-ex/030501
Measurement of the Charge Asymmetry in
We report on a search for a CP-violating asymmetry in the charmless hadronic
decay B -> K*(892)+- pi-+, using 9.12 fb^-1 of integrated luminosity produced
at \sqrt{s}=10.58 GeV and collected with the CLEO detector. We find A_{CP}(B ->
K*(892)+- pi-+) = 0.26+0.33-0.34(stat.)+0.10-0.08(syst.), giving an allowed
interval of [-0.31,0.78] at the 90% confidence level.Comment: 7 pages postscript, also available through
http://w4.lns.cornell.edu/public/CLNS, submitted to PR
Study of the q^2-Dependence of B --> pi ell nu and B --> rho(omega)ell nu Decay and Extraction of |V_ub|
We report on determinations of |Vub| resulting from studies of the branching
fraction and q^2 distributions in exclusive semileptonic B decays that proceed
via the b->u transition. Our data set consists of the 9.7x10^6 BBbar meson
pairs collected at the Y(4S) resonance with the CLEO II detector. We measure
B(B0 -> pi- l+ nu) = (1.33 +- 0.18 +- 0.11 +- 0.01 +- 0.07)x10^{-4} and B(B0 ->
rho- l+ nu) = (2.17 +- 0.34 +0.47/-0.54 +- 0.41 +- 0.01)x10^{-4}, where the
errors are statistical, experimental systematic, systematic due to residual
form-factor uncertainties in the signal, and systematic due to residual
form-factor uncertainties in the cross-feed modes, respectively. We also find
B(B+ -> eta l+ nu) = (0.84 +- 0.31 +- 0.16 +- 0.09)x10^{-4}, consistent with
what is expected from the B -> pi l nu mode and quark model symmetries. We
extract |Vub| using Light-Cone Sum Rules (LCSR) for 0<= q^2<16 GeV^2 and
Lattice QCD (LQCD) for 16 GeV^2 <= q^2 < q^2_max. Combining both intervals
yields |Vub| = (3.24 +- 0.22 +- 0.13 +0.55/-0.39 +- 0.09)x10^{-3}$ for pi l nu,
and |Vub| = (3.00 +- 0.21 +0.29/-0.35 +0.49/-0.38 +-0.28)x10^{-3} for rho l nu,
where the errors are statistical, experimental systematic, theoretical, and
signal form-factor shape, respectively. Our combined value from both decay
modes is |Vub| = (3.17 +- 0.17 +0.16/-0.17 +0.53/-0.39 +-0.03)x10^{-3}.Comment: 45 pages postscript, also available through
http://w4.lns.cornell.edu/public/CLNS, submitted to PR
Search for CP Violation in D^0--> K_S^0 pi^+pi^-
We report on a search for CP violation in the decay of D0 and D0B to Kshort
pi+pi-. The data come from an integrated luminosity of 9.0 1/fb of e+e-
collisions at sqrt(s) ~ 10 GeV recorded with the CLEO II.V detector. The
resonance substructure of this decay is well described by ten quasi-two-body
decay channels (K*-pi+, K*0(1430)-pi+, K*2(1430)-pi+, K*(1680)-pi+, Kshort rho,
Kshort omega, Kshort f0(980), Kshort f2(1270), Kshort f0(1370), and the ``wrong
sign'' K*+ pi-) plus a small non-resonant component. We observe no evidence for
CP violation in the amplitudes and phases that describe the decay D0 to K_S^0
pi+pi-.Comment: 10 pages, 3 figures, also available at
http://w4.lns.cornell.edu/public/CLNS/, submitted to PR
Measurement of Lepton Momentum Moments in the Decay bar{B} \to X \ell \bar{\nu} and Determination of Heavy Quark Expansion Parameters and |V_cb|
We measure the primary lepton momentum spectrum in B-bar to X l nu decays,
for p_l > 1.5 GeV/c in the B rest frame. From this, we calculate various
moments of the spectrum. In particular, we find R_0 = [int(E_l>1.7)
(dGam/dE_sl)*dE_l] / [int(E_l>1.5) (dGam/dE_sl)*dE_l] = 0.6187 +/- 0.0014_stat
+/- 0.0016_sys and R_1 = [int(E_l>1.5) E_l(dGam/dE_sl)*dE_l] / [int(E_l>1.5)
(dGam/dE_sl)*dE_l] = (1.7810 +/- 0.0007_stat +/- 0.0009_sys) GeV. We use these
moments to determine non-perturbative parameters governing the semileptonic
width. In particular, we extract the Heavy Quark Expansion parameters
Lambda-bar = (0.39 +/- 0.03_stat +/- 0.06_sys +/- 0.12_th) GeV and lambda_1 =
(-0.25 +/- 0.02_stat +/- 0.05_sys +/- 0.14_th) GeV^2. The theoretical
constraints used are evaluated through order 1/M_B^3 in the non-perturbative
expansion and beta_0*alpha__s^2 in the perturbative expansion. We use these
parameters to extract |V_cb| from the world average of the semileptonic width
and find |V_cb| = (40.8 +/- 0.5_Gam-sl +/- 0.4_(lambda_1,Lambda-bar)-exp +/-
0.9_th) x 10^-3. In addition, we extract the short range b-quark mass m_b^1S =
(4.82 +/- 0.07_exp +/- 0.11_th) GeV/c^2. Finally, we discuss the implications
of our measurements for the theoretical understanding of inclusive semileptonic
processes.Comment: 21 pages postscript, also available through
http://w4.lns.cornell.edu/public/CLNS, submitted to PR
Upstream Solutions: Does the Supplemental Security Income Program Reduce Disability in the Elderly?
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72843/1/j.1468-0009.2007.00512.x.pd
In vitro mesenchymal stem cell response to a CO2 laser modified polymeric material
With an ageing world population it is becoming significantly apparent that there is a need to produce implants and platforms to manipulate stem cell growth on a pharmaceutical scale. This is needed to meet the socio-economic demands of many countries worldwide. This paper details one of the first ever studies in to the manipulation of stem cell growth on CO2 laser surface treated nylon 6,6 highlighting its potential as an inexpensive platform to manipulate stem cell growth on a pharmaceutical scale. Through CO2 laser surface treatment discrete changes to the surfaces were made. That is, the surface roughness of the nylon 6,6 was increased by up to 4.3 µm, the contact angle was modulated by up to 5° and the surface oxygen content increased by up to 1 atom%. Following mesenchymal stem cell growth on the laser treated samples, it was identified that CO2 laser surface treatment gave rise to an enhanced response with an increase in viable cell count of up to 60,000 cells/ml when compared to the as-received sample. The effect of surface parameters modified by the CO2 laser surface treatment on the mesenchymal stem cell response is also discussed along with potential trends that could be identified to govern the mesenchymal stem cell response
- …