2,104 research outputs found
Systematic comparison of different techniques to measure hippocampal subfield volumes in ADNI2
OBJECTIVE: Subfield-specific measurements provide superior information in the early stages of neurodegenerative diseases compared to global hippocampal measurements. The overall goal was to systematically compare the performance of five representative manual and automated T1 and T2 based subfield labeling techniques in a sub-set of the ADNI2 population.
METHODS: The high resolution T2 weighted hippocampal images (T2-HighRes) and the corresponding T1 images from 106 ADNI2 subjects (41 controls, 57 MCI, 8 AD) were processed as follows. A. T1-based: 1. Freesurfer + Large-Diffeomorphic-Metric-Mapping in combination with shape analysis. 2. FreeSurfer 5.1 subfields using in-vivo atlas. B. T2-HighRes: 1. Model-based subfield segmentation using ex-vivo atlas (FreeSurfer 6.0). 2. T2-based automated multi-atlas segmentation combined with similarity-weighted voting (ASHS). 3. Manual subfield parcellation. Multiple regression analyses were used to calculate effect sizes (ES) for group, amyloid positivity in controls, and associations with cognitive/memory performance for each approach.
RESULTS: Subfield volumetry was better than whole hippocampal volumetry for the detection of the mild atrophy differences between controls and MCI (ES: 0.27 vs 0.11). T2-HighRes approaches outperformed T1 approaches for the detection of early stage atrophy (ES: 0.27 vs.0.10), amyloid positivity (ES: 0.11 vs 0.04), and cognitive associations (ES: 0.22 vs 0.19).
CONCLUSIONS: T2-HighRes subfield approaches outperformed whole hippocampus and T1 subfield approaches. None of the different T2-HghRes methods tested had a clear advantage over the other methods. Each has strengths and weaknesses that need to be taken into account when deciding which one to use to get the best results from subfield volumetry
Partial Volume Segmentation of Brain MRI Scans of any Resolution and Contrast
Partial voluming (PV) is arguably the last crucial unsolved problem in
Bayesian segmentation of brain MRI with probabilistic atlases. PV occurs when
voxels contain multiple tissue classes, giving rise to image intensities that
may not be representative of any one of the underlying classes. PV is
particularly problematic for segmentation when there is a large resolution gap
between the atlas and the test scan, e.g., when segmenting clinical scans with
thick slices, or when using a high-resolution atlas. In this work, we present
PV-SynthSeg, a convolutional neural network (CNN) that tackles this problem by
directly learning a mapping between (possibly multi-modal) low resolution (LR)
scans and underlying high resolution (HR) segmentations. PV-SynthSeg simulates
LR images from HR label maps with a generative model of PV, and can be trained
to segment scans of any desired target contrast and resolution, even for
previously unseen modalities where neither images nor segmentations are
available at training. PV-SynthSeg does not require any preprocessing, and runs
in seconds. We demonstrate the accuracy and flexibility of the method with
extensive experiments on three datasets and 2,680 scans. The code is available
at https://github.com/BBillot/SynthSeg.Comment: accepted for MICCAI 202
Farmers’ Perceptions of and Adaptations to Climate Change in Southeast Asia: The Case Study from Thailand and Vietnam
The perceptions of climate change and adaptation choices made by farmers are important considerations in the design of adaptation strategies by policy makers and agricultural extension services. This paper seeks to determine these perceptions and choices by farmers in already poor environmental regions of Thailand and Vietnam especially vulnerable to climate change. Overall findings were that farmers do perceive climate change, but describe it in quite distinct ways and that location influences how farmers recognize climate change. Our 2007 and 2013 surveys show that farmers are adapting, but it is difficult to determine if specific practices are “climate smart”. Further, adaptation measures are informed by perception and, at least in the case of Vietnam, perceptions are shaped by the respondent’s characteristics, location variables and recent climate related shocks. Finally, the three climate variables of rainfall, temperature, and wind are the most important factors in explaining specific adaptation measures chosen by farmers. Farmer participation is an essential part of public actions designed to allow adaptation to climate change. Our research can also contribute to understanding farmer constraints and tailoring good overall strategies to the local heterogeneity of vulnerable locations
TEAD and YAP regulate the enhancer network of human embryonic pancreatic progenitors.
The genomic regulatory programmes that underlie human organogenesis are poorly understood. Pancreas development, in particular, has pivotal implications for pancreatic regeneration, cancer and diabetes. We have now characterized the regulatory landscape of embryonic multipotent progenitor cells that give rise to all pancreatic epithelial lineages. Using human embryonic pancreas and embryonic-stem-cell-derived progenitors we identify stage-specific transcripts and associated enhancers, many of which are co-occupied by transcription factors that are essential for pancreas development. We further show that TEAD1, a Hippo signalling effector, is an integral component of the transcription factor combinatorial code of pancreatic progenitor enhancers. TEAD and its coactivator YAP activate key pancreatic signalling mediators and transcription factors, and regulate the expansion of pancreatic progenitors. This work therefore uncovers a central role for TEAD and YAP as signal-responsive regulators of multipotent pancreatic progenitors, and provides a resource for the study of embryonic development of the human pancreas
Reassessing the role of mitochondrial DNA mutations in autism spectrum disorder
<p>Abstract</p> <p>Background</p> <p>There is increasing evidence that impairment of mitochondrial energy metabolism plays an important role in the pathophysiology of autism spectrum disorders (ASD; OMIM number: 209850). A significant proportion of ASD cases display biochemical alterations suggestive of mitochondrial dysfunction and several studies have reported that mutations in the mitochondrial DNA (mtDNA) molecule could be involved in the disease phenotype.</p> <p>Methods</p> <p>We analysed a cohort of 148 patients with idiopathic ASD for a number of mutations proposed in the literature as pathogenic in ASD. We also carried out a case control association study for the most common European haplogroups (hgs) and their diagnostic single nucleotide polymorphisms (SNPs) by comparing cases with 753 healthy and ethnically matched controls.</p> <p>Results</p> <p>We did not find statistical support for an association between mtDNA mutations or polymorphisms and ASD.</p> <p>Conclusions</p> <p>Our results are compatible with the idea that mtDNA mutations are not a relevant cause of ASD and the frequent observation of concomitant mitochondrial dysfunction and ASD could be due to nuclear factors influencing mitochondrion functions or to a more complex interplay between the nucleus and the mitochondrion/mtDNA.</p
Investigation of the Interaction between the Large and Small Subunits of Potato ADP-Glucose Pyrophosphorylase
ADP-glucose pyrophosphorylase (AGPase), a key allosteric enzyme involved in higher plant starch biosynthesis, is composed of pairs of large (LS) and small subunits (SS). Current evidence indicates that the two subunit types play distinct roles in enzyme function. Recently the heterotetrameric structure of potato AGPase has been modeled. In the current study, we have applied the molecular mechanics generalized born surface area (MM-GBSA) method and identified critical amino acids of the potato AGPase LS and SS subunits that interact with each other during the native heterotetrameric structure formation. We have further shown the role of the LS amino acids in subunit-subunit interaction by yeast two-hybrid, bacterial complementation assay and native gel. Comparison of the computational results with the experiments has indicated that the backbone energy contribution (rather than the side chain energies) of the interface residues is more important in identifying critical residues. We have found that lateral interaction of the LS-SS is much stronger than the longitudinal one, and it is mainly mediated by hydrophobic interactions. This study will not only enhance our understanding of the interaction between the SS and the LS of AGPase, but will also enable us to engineer proteins to obtain better assembled variants of AGPase which can be used for the improvement of plant yield
Association of MC1R Variants and host phenotypes with melanoma risk in CDKN2A mutation carriers: a GenoMEL study
<p><b>Background</b> Carrying the cyclin-dependent kinase inhibitor 2A (CDKN2A) germline mutations is associated with a high risk for melanoma. Penetrance of CDKN2A mutations is modified by pigmentation characteristics, nevus phenotypes, and some variants of the melanocortin-1 receptor gene (MC1R), which is known to have a role in the pigmentation process. However, investigation of the associations of both MC1R variants and host phenotypes with melanoma risk has been limited.</p>
<p><b>Methods</b> We included 815 CDKN2A mutation carriers (473 affected, and 342 unaffected, with melanoma) from 186 families from 15 centers in Europe, North America, and Australia who participated in the Melanoma Genetics Consortium. In this family-based study, we assessed the associations of the four most frequent MC1R variants (V60L, V92M, R151C, and R160W) and the number of variants (1, ≥2 variants), alone or jointly with the host phenotypes (hair color, propensity to sunburn, and number of nevi), with melanoma risk in CDKN2A mutation carriers. These associations were estimated and tested using generalized estimating equations. All statistical tests were two-sided.</p>
<p><b>Results</b> Carrying any one of the four most frequent MC1R variants (V60L, V92M, R151C, R160W) in CDKN2A mutation carriers was associated with a statistically significantly increased risk for melanoma across all continents (1.24 × 10−6 ≤ P ≤ .0007). A consistent pattern of increase in melanoma risk was also associated with increase in number of MC1R variants. The risk of melanoma associated with at least two MC1R variants was 2.6-fold higher than the risk associated with only one variant (odds ratio = 5.83 [95% confidence interval = 3.60 to 9.46] vs 2.25 [95% confidence interval = 1.44 to 3.52]; Ptrend = 1.86 × 10−8). The joint analysis of MC1R variants and host phenotypes showed statistically significant associations of melanoma risk, together with MC1R variants (.0001 ≤ P ≤ .04), hair color (.006 ≤ P ≤ .06), and number of nevi (6.9 × 10−6 ≤ P ≤ .02).</p>
<p><b>Conclusion</b> Results show that MC1R variants, hair color, and number of nevi were jointly associated with melanoma risk in CDKN2A mutation carriers. This joint association may have important consequences for risk assessments in familial settings.</p>
Modulation of enhancer looping and differential gene targeting by Epstein-Barr virus transcription factors directs cellular reprogramming
Epstein-Barr virus (EBV) epigenetically reprogrammes B-lymphocytes to drive immortalization and facilitate viral persistence. Host-cell transcription is perturbed principally through the actions of EBV EBNA 2, 3A, 3B and 3C, with cellular genes deregulated by specific combinations of these EBNAs through unknown mechanisms. Comparing human genome binding by these viral transcription factors, we discovered that 25% of binding sites were shared by EBNA 2 and the EBNA 3s and were located predominantly in enhancers. Moreover, 80% of potential EBNA 3A, 3B or 3C target genes were also targeted by EBNA 2, implicating extensive interplay between EBNA 2 and 3 proteins in cellular reprogramming. Investigating shared enhancer sites neighbouring two new targets (WEE1 and CTBP2) we discovered that EBNA 3 proteins repress transcription by modulating enhancer-promoter loop formation to establish repressive chromatin hubs or prevent assembly of active hubs. Re-ChIP analysis revealed that EBNA 2 and 3 proteins do not bind simultaneously at shared sites but compete for binding thereby modulating enhancer-promoter interactions. At an EBNA 3-only intergenic enhancer site between ADAM28 and ADAMDEC1 EBNA 3C was also able to independently direct epigenetic repression of both genes through enhancer-promoter looping. Significantly, studying shared or unique EBNA 3 binding sites at WEE1, CTBP2, ITGAL (LFA-1 alpha chain), BCL2L11 (Bim) and the ADAMs, we also discovered that different sets of EBNA 3 proteins bind regulatory elements in a gene and cell-type specific manner. Binding profiles correlated with the effects of individual EBNA 3 proteins on the expression of these genes, providing a molecular basis for the targeting of different sets of cellular genes by the EBNA 3s. Our results therefore highlight the influence of the genomic and cellular context in determining the specificity of gene deregulation by EBV and provide a paradigm for host-cell reprogramming through modulation of enhancer-promoter interactions by viral transcription factors
Exocomets from a Solar System Perspective
Exocomets are small bodies releasing gas and dust which orbit stars other than the Sun. Their existence was first inferred
from the detection of variable absorption features in stellar spectra in the late 1980s using spectroscopy. More recently,
they have been detected through photometric transits from space, and through far-IR/mm gas emission within debris
disks. As (exo)comets are considered to contain the most pristine material accessible in stellar systems, they hold the
potential to give us information about early stage formation and evolution conditions of extra solar systems. In the solar
system, comets carry the physical and chemical memory of the protoplanetary disk environment where they formed,
providing relevant information on processes in the primordial solar nebula. The aim of this paper is to compare essential
compositional properties between solar system comets and exocomets to allow for the development of new observational
methods and techniques. The paper aims to highlight commonalities and to discuss differences which may aid the
communication between the involved research communities and perhaps also avoid misconceptions. The compositional
properties of solar system comets and exocomets are summarized before providing an observational comparison between
them. Exocomets likely vary in their composition depending on their formation environment like solar system comets do,
and since exocomets are not resolved spatially, they pose a challenge when comparing them to high fidelity observations of solar system comets. Observations of gas around main sequence stars, spectroscopic observations of “polluted” white
dwarf atmospheres and spectroscopic observations of transiting exocomets suggest that exocomets may show
compositional similarities with solar system comets. The recent interstellar visitor 2I/Borisov showed gas, dust and
nuclear properties similar to that of solar system comets. This raises the tantalising prospect that observations of
interstellar comets may help bridge the fields of exocomet and solar system comets
Expression profile analysis of the inflammatory response regulated by hepatocyte nuclear factor 4α
<p>Abstract</p> <p>Background</p> <p>Hepatocyte nuclear factor 4α (HNF4α), a liver-specific transcription factor, plays a significant role in liver-specific functions. However, its functions are poorly understood in the regulation of the inflammatory response. In order to obtain a genomic view of HNF4α in this context, microarray analysis was used to probe the expression profile of an inflammatory response induced by cytokine stimulation in a model of HNF4α knock-down in HepG2 cells.</p> <p>Results</p> <p>The expression of over five thousand genes in HepG2 cells is significantly changed with the dramatic reduction of HNF4α concentration compared to the cells with native levels of HNF4α. Over two thirds (71%) of genes that exhibit differential expression in response to cytokine treatment also reveal differential expression in response to HNF4α knock-down. In addition, we found that a number of HNF4α target genes may be indirectly mediated by an ETS-domain transcription factor ELK1, a nuclear target of mitogen-activated protein kinase (MAPK).</p> <p>Conclusion</p> <p>The results indicate that HNF4α has an extensive impact on the regulation of a large number of the liver-specific genes. HNF4α may play a role in regulating the cytokine-induced inflammatory response. This study presents a novel function for HNF4α, acting not only as a global player in many cellular processes, but also as one of the components of inflammatory response in the liver.</p
- …