102 research outputs found
F18 fluorodeoxyglucose uptake in progressive transformation of germinal centres
FDG-PET/CT is a widely established imaging modality for staging, restaging and monitoring therapy response in lymphoma patients. Progressive transformation of germinal centres (PTGC) is a benign condition presenting characteristically as asymptomatic lymphadenopathy. This paper presents a case of a 53-year-old man with a history of Hodgkin’s disease (HD) whose F18 FDG-PET/CT scan showed high uptake in left axillary lymph nodes (SUV 3.8). A subsequent, left axillary lymph node biopsy revealed PTGC. PTGC can present as a false positive finding on FDG-PET/CT in lymphoma patients and biopsy should be done in HD patients in clinical remission but have a positive FDG-PET/CT scan
Spectral quantification of nonlinear behaviour of the nearshore seabed and correlations with potential forcings at Duck, N.C., U.S.A
Local bathymetric quasi-periodic patterns of oscillation are identified from
monthly profile surveys taken at two shore-perpendicular transects at the USACE
field research facility in Duck, North Carolina, USA, spanning 24.5 years and
covering the swash and surf zones. The chosen transects are the two furthest
(north and south) from the pier located at the study site. Research at Duck has
traditionally focused on one or more of these transects as the effects of the
pier are least at these locations. The patterns are identified using singular
spectrum analysis (SSA). Possible correlations with potential forcing
mechanisms are discussed by 1) doing an SSA with same parameter settings to
independently identify the quasi-periodic cycles embedded within three
potentially linked sequences: monthly wave heights (MWH), monthly mean water
levels (MWL) and the large scale atmospheric index known as the North Atlantic
Oscillation (NAO) and 2) comparing the patterns within MWH, MWL and NAO to the
local bathymetric patterns. The results agree well with previous patterns
identified using wavelets and confirm the highly nonstationary behaviour of
beach levels at Duck; the discussion of potential correlations with
hydrodynamic and atmospheric phenomena is a new contribution. The study is then
extended to all measured bathymetric profiles, covering an area of 1100m
(alongshore) by 440m (cross-shore), to 1) analyse linear correlations between
the bathymetry and the potential forcings using multivariate empirical
orthogonal functions (MEOF) and linear correlation analysis and 2) identify
which collective quasi-periodic bathymetric patterns are correlated with those
within MWH, MWL or NAO, based on a (nonlinear) multichannel singular spectrum
analysis (MSSA). (...continued in submitted paper)Comment: 50 pages, 3 tables, 8 figure
Bounding Mean First Passage Times in Population Continuous-Time Markov Chains
We consider the problem of bounding mean first passage times and reachability probabilities for the class of population continuous-time Markov chains, which capture stochastic interactions between groups of identical agents. The quantitative analysis of such models is notoriously difficult since typically neither state-based numerical approaches nor methods based on stochastic sampling give efficient and accurate results. Here, we propose a novel approach that leverages techniques from martingale theory and stochastic processes to generate constraints on the statistical moments of first passage time distributions. These constraints induce a semi-definite program that can be used to compute exact bounds on reachability probabilities and mean first passage times without numerically solving the transient probability distribution of the process or sampling from it. We showcase the method on some test examples and tailor it to models exhibiting multimodality, a class of particularly challenging scenarios from biology
Smear plus Detect-TB for a sensitive diagnosis of pulmonary tuberculosis: a cost-effectiveness analysis in an incarcerated population
Background: Prison conditions can favor the spread of tuberculosis (TB). This study aimed to evaluate in a Brazilian prison: the performance and accuracy of smear, culture and Detect-TB; performance of smear plus culture and smear plus Detect-TB, according to different TB prevalence rates; and the cost-effectiveness of these procedures for pulmonary tuberculosis (PTB) diagnosis. Methods: This paper describes a cost-effectiveness study. A decision analytic model was developed to estimate the costs and cost-effectiveness of five routine diagnostic procedures for diagnosis of PTB using sputum specimens: a) Smear alone, b) Culture alone, c) Detect-TB alone, d) Smear plus culture and e) Smear plus Detect-TB. The cost-effectiveness ratio of costs were evaluated per correctly diagnosed TB case and all procedures costs were attributed based on the procedure costs adopted by the Brazilian Public Health System. Results: A total of 294 spontaneous sputum specimens from patients suspected of having TB were analyzed. The sensibility and specificity were calculated to be 47% and 100% for smear; 93% and 100%, for culture; 74% and 95%, for Detect-TB; 96% and 100%, for smear plus culture; and 86% and 95%, for smear plus Detect-TB. The negative and positive predictive values for smear plus Detect-TB, according to different TB prevalence rates, ranged from 83 to 99% and 48 to 96%, respectively. In a cost-effectiveness analysis, smear was both less costly and less effective than the other strategies. Culture and smear plus culture were more effective but more costly than the other strategies. Smear plus Detect-TB was the most cost-effective method. Conclusions: The Detect-TB evinced to be sensitive and effective for the PTB diagnosis when applied with smear microscopy. Diagnostic methods should be improved to increase TB case detection. To support rational decisions about the implementation of such techniques, cost-effectiveness studies are essential, including in prisons, which are known for health care assessment problems
Regulation of Tumor Suppressor p53 and HCT116 Cell Physiology by Histone Demethylase JMJD2D/KDM4D
JMJD2D, also known as KDM4D, is a histone demethylase that removes methyl moieties from lysine 9 on histone 3 and from lysine 26 on histone 1.4. Here, we demonstrate that JMJD2D forms a complex with the p53 tumor suppressor in vivo and interacts with the DNA binding domain of p53 in vitro. A luciferase reporter plasmid driven by the promoter of p21, a cell cycle inhibitor and prominent target gene of p53, was synergistically activated by p53 and JMJD2D, which was dependent on JMJD2D catalytic activity. Likewise, overexpression of JMJD2D induced p21 expression in U2OS osteosarcoma cells in the absence and presence of adriamycin, an agent that induces DNA damage. Furthermore, downregulation of JMJD2D inhibited cell proliferation in wild-type and even more so in p53−/− HCT116 colon cancer cells, suggesting that JMJD2D is a pro-proliferative molecule. JMJD2D depletion also induced more strongly apoptosis in p53−/− compared to wild-type HCT116 cells. Collectively, our results demonstrate that JMJD2D can stimulate cell proliferation and survival, suggesting that its inhibition may be helpful in the fight against cancer. Furthermore, our data imply that activation of p53 may represent a mechanism by which the pro-oncogenic functions of JMJD2D become dampened
Predictors of Multidrug- and Extensively Drug-Resistant Tuberculosis in a High HIV Prevalence Community
BACKGROUND: Multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis (TB) have emerged in high-HIV-prevalence settings, which generally lack laboratory infrastructure for diagnosing TB drug resistance. Even where available, inherent delays with current drug-susceptibility testing (DST) methods result in clinical deterioration and ongoing transmission of MDR and XDR-TB. Identifying clinical predictors of drug resistance may aid in risk stratification for earlier treatment and infection control. METHODS: We performed a retrospective case-control study of patients with MDR (cases), XDR (cases) and drug-susceptible (controls) TB in a high-HIV-prevalence setting in South Africa to identify clinical and demographic risk factors for drug-resistant TB. Controls were selected in a 1:1:1 ratio and were not matched. We calculated odds ratios (OR) and performed multivariate logistic regression to identify independent predictors. RESULTS: We enrolled 116, 123 and 139 patients with drug-susceptible, MDR, and XDR-TB. More than 85% in all three patient groups were HIV-infected. In multivariate analysis, MDR and XDR-TB were each strongly associated with history of TB treatment failure (adjusted OR 51.7 [CI 6.6-403.7] and 51.5 [CI 6.4-414.0], respectively) and hospitalization more than 14 days (aOR 3.8 [CI 1.1-13.3] and 6.1 [CI 1.8-21.0], respectively). Prior default from TB treatment was not a risk factor for MDR or XDR-TB. HIV was a risk factor for XDR (aOR 8.2, CI 1.3-52.6), but not MDR-TB. Comparing XDR with MDR-TB patients, the only significant risk factor for XDR-TB was HIV infection (aOR 5.3, CI 1.0-27.6). DISCUSSION: In this high-HIV-prevalence and drug-resistant TB setting, a history of prolonged hospitalization and previous TB treatment failure were strong risk factors for both MDR and XDR-TB. Given high mortality observed among patients with HIV and drug-resistant TB co-infection, previously treated and hospitalized patients should be considered for empiric second-line TB therapy while awaiting confirmatory DST results in settings with a high-burden of MDR/XDR-TB
Cell cycle-dependent phosphorylation of pRb-like protein in root meristem cells of Vicia faba
The retinoblastoma tumor suppressor protein (pRb) regulates cell cycle progression by controlling the G1-to-S phase transition. As evidenced in mammals, pRb has three functionally distinct binding domains and interacts with a number of proteins including the E2F family of transcription factors, proteins with a conserved LxCxE motif (D-type cyclin), and c-Abl tyrosine kinase. CDK-mediated phosphorylation of pRb inhibits its ability to bind target proteins, thus enabling further progression of the cell cycle. As yet, the roles of pRb and pRb-binding factors have not been well characterized in plants. By using antibody which specifically recognizes phosphorylated serines (S807/811) in the c-Abl tyrosine kinase binding C-domain of human pRb, we provide evidence for the cell cycle-dependent changes in pRb-like proteins in root meristems cells of Vicia faba. An increased phosphorylation of this protein has been found correlated with the G1-to-S phase transition
Recommended from our members
The 2019 Southern Hemisphere stratospheric polar vortex weakening and its impacts
This study offers an overview of the low-frequency (i.e., monthly to seasonal) evolution, dynamics, predictability, and surface impacts of a rare Southern Hemisphere (SH) stratospheric warming that occurred in austral spring 2019. Between late August to mid-September 2019, the stratospheric circumpolar westerly jet weakened rapidly, and Antarctic stratospheric temperatures rose dramatically. The deceleration of the vortex at 10 hPa was as drastic as that of the first ever observed major sudden stratospheric warming in the SH during 2002, while the mean Antarctic warming over the course of spring 2019 broke the previous record of 2002 by ~50% in the mid-stratosphere. This event was preceded by a poleward shift of the SH polar night jet in the uppermost stratosphere in early winter, which was then followed by record-strong planetary wave-one activity propagating upward from the troposphere in August that acted to dramatically weaken the polar vortex throughout the depth of the stratosphere. The weakened vortex winds and elevated temperatures moved downward to the surface from mid-October to December, promoting a record strong swing of the Southern Annular Mode (SAM) to its negative phase. This record-negative SAM appeared to be a primary driver of the extreme hot and dry conditions over subtropical eastern Australia that accompanied the severe wildfires that occurred in late spring 2019. State-of-the-art dynamical seasonal forecast systems skilfully predicted the significant vortex weakening of spring 2019 and subsequent development of negative SAM from as early as late July
C6-ceramide synergistically potentiates the anti-tumor effects of histone deacetylase inhibitors via AKT dephosphorylation and α-tubulin hyperacetylation both in vitro and in vivo
Histone deacetylase inhibitors (HDACIs) have shown promising anti-tumor effects for a variety of malignancies, however, many tumors are reportedly resistant to them. In this study, we made a novel discovery that co-administration of HDACIs (Trichostatin A (TSA) and others) and exogenous cell-permeable short-chain ceramide (C6) results in striking increase in cancer cell death and apoptosis in multiple cancer cells. These events are associated with perturbations in diverse cell signaling pathways, including inactivation of Akt/mTOR and increase in α-tubulin acetylation (both in vivo and in vitro). TSA interacts in a highly synergistic manner with C6-ceramide to disrupt HDAC6/protein phosphatase 1 (PP1)/tubulin complex, to induce α-tubulin hyperacetylation, and to release and activate PP1, which then leads to AKT dephosphorylation and eventually causes cancer cell death. Interestingly, TSA itself results in short-term ceramide accumulation, which as a result of metabolic (glycosylation) removal, does not result in evident increase of cancer cell death. However, adding C6-ceramide led to a very pronounced increase in ceramide level and marked increase in cell death. Importantly, the effective synergistic anti-tumor activity of TSA plus C6-ceramide is also seen in in vivo mice xenograft pancreatic and ovarian cancer models, indicating that this regimen (HDACI plus C6-ceramide) may represent a more effective form of therapy against pancreatic and ovarian carcinoma
- …