196 research outputs found

    Insects as Stem Engineers: Interactions Mediated by the Twig-Girdler Oncideres albomarginata chamela Enhance Arthropod Diversity

    Get PDF
    Background: Ecosystem engineering may influence community structure and biodiversity by controlling the availability of resources and/or habitats used by other organisms. Insect herbivores may act as ecosystem engineers but there is still poor understanding of the role of these insects structuring arthropod communities. Methodology/Principal Findings: We evaluated the effect of ecosystem engineering by the stem-borer Oncideres albomarginata chamela on the arthropod community of a tropical dry forest for three consecutive years. The results showed that ecosystem engineering by O. albomarginata chamela had strong positive effects on the colonization, abundance, species richness and composition of the associated arthropod community, and it occurred mainly through the creation of a habitat with high availability of oviposition sites for secondary colonizers. These effects cascade upward to higher trophic levels. Overall, ecosystem engineering by O. albomarginata chamela was responsible for nearly 95 % of the abundance of secondary colonizers and 82 % of the species richness. Conclusions/Significance: Our results suggest that ecosystem engineering by O. albomarginata chamela is a keystone process structuring an arthropod community composed by xylovores, predators and parasitoids. This study is the first to empirically demonstrate the effect of the ecosystem engineering by stem-boring insects on important attributes o

    An integrative approach to characterize the early phases of dimethylhydrazine-induced colorectal carcinogenesis in the rat

    Get PDF
    This study aimed to characterize an animal model of colorectal cancer (CRC) in the early stages of disease development. Twenty-nine male Wistar rats were divided into two control groups (CTRL1 and CTRL2), receiving EDTA–saline injections and two induced groups (CRC1 and CRC2), receiving 1,2-dimethylhydrazine (DMH) injections for seven consecutive weeks. CRC1 and CTRL1 were euthanized at the 11th week, while CRC2 and CTRL2 were euthanized at the 17th week. DMH treatment decreased microhematocrit values and IL-6, ghrelin, and myostatin serum levels. Histopathological analysis of intestinal sections showed that DMH-treated rats were characterized by moderate to severe epithelial dysplasia. An adenoma was observed in one animal (CRC2 group), and the presence of inflammatory infiltrate at the intestinal level was primarily observed in DMH-treated animals. DMH also induced Ki-67 immunoexpression. The gut microbiota analysis showed a higher abundance of Firmicutes, Clostridia, Clostridiales, Peptostreptococcaceae, Blautia, Romboutsia, and Clostridium sensu stricto in CRC than CTRL rats, whereas Prevotellaceae, Prevotella, Akkermansia, and Lactobacillus levels were more prevalent in CTRL animals. Our results suggest that this model could be helpful to investigate chemoprevention in the early stages of CRC

    Multilocus Bayesian Estimates of Intra-Oceanic Genetic Differentiation, Connectivity, and Admixture in Atlantic Swordfish (Xiphias gladius L.)

    Get PDF
    Versión del editor

    Natural Distribution of Parasitoids of Larvae of the Fall Armyworm, Spodoptera frugiperda, in Argentina

    Get PDF
    To develop a better understanding of the natural distribution of the fall armyworm, Spodoptera frugiperda (Smith) (Lepidoptera: Noctuidae), and to update the knowledge of the incidence of its complex of parasitoids. S. frugiperda, samplings in whorl-stage corn were carried out in provinces of Argentina from 1999 to 2003. S. frugiperda larvae were collected from corn in localities of the provinces of Tucumán, Salta, Jujuy, Santiago del Estero, La Rioja, Córdoba, San Luis, Chaco and Misiones. In each locality 30 corn plants were sampled and only larvae located in those plants were collected. The parasitoids that emerged from S. frugiperda larvae were identified and counted. The abundance of the parasitoids and the parasitism rate were estimated. The S. frugiperda parasitoids collected were Campoletis grioti (Blanchard) (Hymenoptera: Ichneumonidae), Chelonus insularis (Cresson) (Hymenoptera: Braconidae), Archytas marmoratus (Townsend) (Diptera Tachinidae) and/or A. incertus (Macquart), Ophion sp. (Hymenoptera: Ichneumonidae), Euplectrus platyhypenae Howard (Hymenoptera: Eulophidae), and Incamyia chilensis (Aldrich) (Diptera Tachinidae). C. grioti was the most abundant and frequent during the five-year survey. Similar diversity of parasitoids was obtained in all the provinces, with the exception of I. chilensis and E. platyhypenae that were recovered only in the province of Salta. In the Northwestern region, in Tucumán, C. grioti and species of Archytas were the most abundant and frequent parasitoids. On the contrary, in Salta and Jujuy Ch. insularis was the parasitoid most abundant and frequently recovered. The parasitism rate obtained in Tucumán, Salta and Jujuy provinces were 21.96%, 17.87% and 6.63% respectively with an average of 18.93%. These results demonstrate that hymenopteran and dipteran parasitoids of S. frugiperda occurred differentially throughout the Argentinian provinces and played an important role on the natural control of the S. frugiperda larval population

    Molecular association of glucose-6- phosphate isomerase and pyruvate kinase M2 with glyceraldehyde-3-phosphate dehydrogenase in cancer cells

    Get PDF
    Background: For a long time cancer cells are known for increased uptake of glucose and its metabolization through glycolysis. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a key regulatory enzyme of this pathway and can produce ATP through oxidative level of phosphorylation. Previously, we reported that GAPDH purified from a variety of malignant tissues, but not from normal tissues, was strongly inactivated by a normal metabolite, methylglyoxal (MG).Molecular mechanism behind MG mediated GAPDH inhibition in cancer cells is not well understood. Methods: GAPDH was purified from Ehrlich ascites carcinoma (EAC) cells based on its enzymatic activity. GAPDH associated proteins in EAC cells and 3-methylcholanthrene (3MC) induced mouse tumor tissue were detected by mass spectrometry analysis and immunoprecipitation (IP) experiment, respectively. Interacting domains of GAPDH and its associated proteins were assessed by in silico molecular docking analysis. Mechanism of MG mediated GAPDH inactivation in cancer cells was evaluated by measuring enzyme activity, Circular dichroism (CD) spectroscopy, IP and mass spectrometry analyses. Result: Here, we report that GAPDH is associated with glucose-6-phosphate isomerase (GPI) and pyruvate kinase M2 (PKM2) in Ehrlich ascites carcinoma (EAC) cells and also in 3-methylcholanthrene (3MC) induced mouse tumor tissue. Molecular docking analyses suggest C-terminal domain preference for the interaction between GAPDH and GPI. However, both C and N termini of PKM2 might be interacting with the C terminal domain of GAPDH. Expression of both PKM2 and GPI is increased in 3MC induced tumor compared with the normal tissue. In presence of 1 mM MG,association of GAPDH with PKM2 or GPI is not perturbed, but the enzymatic activity of GAPDH is reduced to 26.8 ± 5 % in 3MC induced tumor and 57.8 ± 2.3 % in EAC cells. Treatment of MG to purified GAPDH complex leads to glycation at R399 residue of PKM2 only, and changes the secondary structure of the protein complex. Conclusion: PKM2 may regulate the enzymatic activity of GAPDH. Increased enzymatic activity of GAPDH in tumor cells may be attributed to its association with PKM2 and GPI. Association of GAPDH with PKM2 and GPI could be a signature for cancer cells. Glycation at R399 of PKM2 and changes in the secondary structure of GAPDH complex could be one of the mechanisms by which GAPDH activity is inhibited in tumor cells by MG

    Photo-enhanced antinodal conductivity in the pseudogap state of high-T-c cuprates

    Get PDF
    A major challenge in understanding the cuprate superconductors is to clarify the nature of the fundamental electronic correlations that lead to the pseudogap phenomenon. Here we use ultrashort light pulses to prepare a non-thermal distribution of excitations and capture novel properties that are hidden at equilibrium. Using a broadband (0.5-2 eV) probe, we are able to track the dynamics of the dielectric function and unveil an anomalous decrease in the scattering rate of the charge carriers in a pseudogap-like region of the temperature (T) and hole-doping (p) phase diagram. In this region, delimited by a well-defined T*(neq)(p) line, the photoexcitation process triggers the evolution of antinodal excitations from gapped (localized) to delocalized quasiparticles characterized by a longer lifetime. The novel concept of photo-enhanced antinodal conductivity is naturally explained within the singleband Hubbard model, in which the short-range Coulomb repulsion leads to a k-space differentiation between nodal quasiparticles and antinodal excitations. \ua9 2014 Macmillan Publishers Limited. All rights reserved

    Author Correction: Comprehensive analysis of chromothripsis in 2,658 human cancers using whole-genome sequencing (Nature Genetics, (2020), 52, 3, (331-341), 10.1038/s41588-019-0576-7)

    Get PDF
    Correction to: Nature Genetics, published online 05 February 2020. In the published version of this paper, the members of the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium were listed in the Supplementary Information; however, these members should have been included in the main paper. The original Article has been corrected to include the members and affiliations of the PCAWG Consortium in the main paper; the corrections have been made to the HTML version of the Article but not the PDF version. Additional corrections to affiliations have been made to the PDF and HTML versions of the original Article for consistency of information between the PCAWG list and the main paper

    British randomised controlled trial of AV and VV optimization ("BRAVO") study:rationale, design, and endpoints

    Get PDF
    Background Echocardiographic optimization of pacemaker settings is the current standard of care for patients treated with cardiac resynchronization therapy. However, the process requires considerable time of expert staff. The BRAVO study is a non-inferiority trial comparing echocardiographic optimization of atrioventricular (AV) and interventricular (VV) delay with an alternative method using non-invasive blood pressure monitoring that can be automated to consume less staff resources. Methods/Design BRAVO is a multi-centre, randomized, cross-over, non-inferiority trial of 400 patients with a previously implanted cardiac resynchronization device. Patients are randomly allocated to six months in each arm. In the echocardiographic arm, AV delay is optimized using the iterative method and VV delay by maximizing LVOT VTI. In the haemodynamic arm AV and VV delay are optimized using non-invasive blood pressure measured using finger photoplethysmography. At the end of each six month arm, patients undergo the primary outcome measure of objective exercise capacity, quantified as peak oxygen uptake (VO2) on a cardiopulmonary exercise test. Secondary outcome measures are echocardiographic measurement of left ventricular remodelling, quality of life score and N-terminal pro B-type Natriuretic Peptide (NT-pro BNP). The study is scheduled to complete recruitment in December 2013 and to complete follow up in December 2014. Discussion If exercise capacity is non-inferior with haemodynamic optimization compared with echocardiographic optimization, it would be proof of concept that haemodynamic optimization is an acceptable alternative which has the potential to be more easily implemented
    corecore