215 research outputs found

    The Gut Microbiota and Their Metabolites in Human Arterial Stiffness

    Get PDF
    Aim: Gut microbiota-derived metabolites, such as short-chain fatty acids (SCFAs) have vasodilator properties in animal and human ex vivo arteries. However, the role of the gut microbiota and SCFAs in arterial stiffness in humans is still unclear. Here we aimed to determine associations between the gut microbiome, SCFA and their G-protein coupled sensing receptors (GPCRs) in relation to human arterial stiffness. / Methods: Ambulatory arterial stiffness index (AASI) was determined from ambulatory blood pressure (BP) monitoring in 69 participants from regional and metropolitan regions in Australia (55.1% women; mean, 59.8± SD, 7.26 years of age). The gut microbiome was determined by 16S rRNA sequencing, SCFA levels by gas chromatography, and GPCR expression in circulating immune cells by real-time PCR. / Results: There was no association between metrics of bacterial α and β diversity and AASI or AASI quartiles in men and women. We identified two main bacteria taxa that were associated with AASI quartiles: Lactobacillus spp. was only present in the lowest quartile, while Clostridium spp. was present in all quartiles but the lowest. AASI was positively associated with higher levels of plasma, but not faecal, butyrate. Finally, we identified that the expression of GPR43 (FFAR2) and GPR41 (FFAR3) in circulating immune cells were negatively associated with AASI. / Conclusions: Our results suggest that arterial stiffness is associated with lower levels of the metabolite-sensing receptors GPR41/GPR43 in humans, blunting its response to BP-lowering metabolites such as butyrate. The role of Lactobacillus spp. and Clostridium spp., as well as butyrate-sensing receptors GPR41/GPR43, in human arterial stiffness needs to be determined

    Pseudogaucher cells obscuring multiple myeloma: a case report

    Get PDF
    Gaucher-like or pseudo-Gaucher cells have been noted in a variety of conditions including acute lymphoblastic leukemia, Hodgkin's disease, thalassemia, and multiple myeloma. They have an eccentric, lobulated nucleus, foamy cytoplasm but lack the tubular inclusions seen in Gaucher cells. The pseudo-Gaucher cells have distinct appearances on electron microscopy which distinguish them from true Gaucher cells

    Evaluation of Antigens for Development of a Serological Test for Human African Trypanosomiasis

    Get PDF
    BACKGROUND: Control and elimination of human African trypanosomiasis (HAT) can be accelerated through the use of diagnostic tests that are more accurate and easier to deploy. The goal of this work was to evaluate the immuno-reactivity of antigens and identify candidates to be considered for development of a simple serological test for the detection of Trypanosoma brucei gambiense or T. b. rhodesiense infections, ideally both. METHODOLOGY/PRINCIPAL FINDINGS: The reactivity of 35 antigens was independently evaluated by slot blot and ELISA against sera from both T. b. gambiense and T. b. rhodesiense infected patients and controls. The antigens that were most reactive by both tests to T. b. gambiense sera were the membrane proteins VSG LiTat 1.3, VSG LiTat 1.5 and ISG64. Reactivity to T. b. rhodesiense sera was highest with VSG LiTat 1.3, VSG LiTat 1.5 and SRA, although much lower than with T. b. gambiense samples. The reactivity of all possible combinations of antigens was also calculated. When the slot blot results of 2 antigens were paired, a VSG LiTat 1.3- ISG75 combination performed best on T. b. gambiense sera, while a VSG LiTat 1.3-VSG LiTat 1.5 combination was the most reactive using ELISA. A combination of SRA and either VSG LiTat 1.3 or VSG LiTat 1.5 had the highest reactivity on T. b. rhodesiense sera according to slot blot, while in ELISA, pairing SRA with either GM6 or VSG LiTat 1.3 yielded the best results. CONCLUSIONS: This study identified antigens that were highly reactive to T. b. gambiense sera, which could be considered for developing a serological test for gambiense HAT, either individually or in combination. Antigens with potential for inclusion in a test for T. b. rhodesiense HAT were also identified, but because their reactivity was comparatively lower, a search for additional antigens would be required before developing a test for this form of the disease.Support was provided by Bill & Melinda Gates Foundation (http://www.gatesfoundation.org/), grant 39524 (JMN); National Institutes of Health (https://www.nih.gov/), grant 2R37AI034432 (MAP); National Institute of Allergy and Infectious Diseases (https://www.niaid.nih.gov/), grants AI035739 and AI056866 (JB); Wellcome Trust (https://wellcome.ac.uk/), grant 101842 (MF); The Sandler Foundation to University of California (JMK); Agence nationale de la recherche (http://www.agence-nationale-recherche.fr/), grant ANR-11-LABX-0024 (DRR); Wellcome Trust Centre for Molecular Parasitology (http://www.gla.ac.uk/researchinstitutes/iii/wtcmp/), grant 104111/Z/14/Z (MPB, RMC and JCM). The funders provided support in the form of salaries for authors JMN, SB, AA, GM, MR, MAP, JB, MF, JMK, DRR, MPB, RMC and JCM, but did not have any additional role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript. HW is an employee of MicroCoat Biotechnologie GmbH. This company was contracted by FIND to evaluate the reactivity of the antigens by slot blot and ELISA against sera. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Formation of Complexes at Plasmodesmata for Potyvirus Intercellular Movement Is Mediated by the Viral Protein P3N-PIPO

    Get PDF
    Intercellular transport of viruses through cytoplasmic connections, termed plasmodesmata (PD), is essential for systemic infection in plants by viruses. Previous genetic and ultrastructural data revealed that the potyvirus cyclindrical inclusion (CI) protein is directly involved in cell-to-cell movement, likely through the formation of conical structures anchored to and extended through PD. In this study, we demonstrate that plasmodesmatal localization of CI in N. benthamiana leaf cells is modulated by the recently discovered potyviral protein, P3N-PIPO, in a CI:P3N-PIPO ratio-dependent manner. We show that P3N-PIPO is a PD-located protein that physically interacts with CI in planta. The early secretory pathway, rather than the actomyosin motility system, is required for the delivery of P3N-PIPO and CI to PD. Moreover, CI mutations that disrupt virus cell-to-cell movement compromise PD-localization capacity. These data suggest that the CI and P3N-PIPO complex coordinates the formation of PD-associated structures that facilitate the intercellular movement of potyviruses in infected plants

    Exploiting nanobodies and Affimers for superresolution imaging in light microscopy

    Get PDF
    Antibodies have long been the main approach used for localizing proteins of interest by light microscopy. In the past 5 yr or so, and with the advent of superresolution microscopy, the diversity of tools for imaging has rapidly expanded. One main area of expansion has been in the area of nanobodies, small single-chain antibodies from camelids or sharks. The other has been the use of artificial scaffold proteins, including Affimers. The small size of nanobodies and Affimers compared with the traditional antibody provides several advantages for superresolution imaging

    Psoriasis Patients Are Enriched for Genetic Variants That Protect against HIV-1 Disease

    Get PDF
    An important paradigm in evolutionary genetics is that of a delicate balance between genetic variants that favorably boost host control of infection but which may unfavorably increase susceptibility to autoimmune disease. Here, we investigated whether patients with psoriasis, a common immune-mediated disease of the skin, are enriched for genetic variants that limit the ability of HIV-1 virus to replicate after infection. We analyzed the HLA class I and class II alleles of 1,727 Caucasian psoriasis cases and 3,581 controls and found that psoriasis patients are significantly more likely than controls to have gene variants that are protective against HIV-1 disease. This includes several HLA class I alleles associated with HIV-1 control; amino acid residues at HLA-B positions 67, 70, and 97 that mediate HIV-1 peptide binding; and the deletion polymorphism rs67384697 associated with high surface expression of HLA-C. We also found that the compound genotype KIR3DS1 plus HLA-B Bw4-80I, which respectively encode a natural killer cell activating receptor and its putative ligand, significantly increased psoriasis susceptibility. This compound genotype has also been associated with delay of progression to AIDS. Together, our results suggest that genetic variants that contribute to anti-viral immunity may predispose to the development of psoriasis

    Cardiomyocyte overexpression of miR-27b induces cardiac hypertrophy and dysfunction in mice

    Get PDF
    Recent studies have begun to reveal critical roles of microRNAs (miRNAs) in the pathogenesis of cardiac hypertrophy and dysfunction. In this study, we tested whether a transforming growth factor-β (TGF-β)-regulated miRNA played a pivotal role in the development of cardiac hypertrophy and heart failure (HF). We observed that miR-27b was upregulated in hearts of cardiomyocyte-specific Smad4 knockout mice, which developed cardiac hypertrophy. In vitro experiments showed that the miR-27b expression could be inhibited by TGF-β1 and that its overexpression promoted hypertrophic cell growth, while the miR-27b suppression led to inhibition of the hypertrophic cell growth caused by phenylephrine (PE) treatment. Furthermore, the analysis of transgenic mice with cardiomyocyte-specific overexpression of miR-27b revealed that miR-27b overexpression was sufficient to induce cardiac hypertrophy and dysfunction. We validated the peroxisome proliferator-activated receptor-γ (PPAR-γ) as a direct target of miR-27b in cardiomyocyte. Consistently, the miR-27b transgenic mice displayed significantly lower levels of PPAR-γ than the control mice. Furthermore, in vivo silencing of miR-27b using a specific antagomir in a pressure-overload-induced mouse model of HF increased cardiac PPAR-γ expression, attenuated cardiac hypertrophy and dysfunction. The results of our study demonstrate that TGF-β1-regulated miR-27b is involved in the regulation of cardiac hypertrophy, and validate miR-27b as an efficient therapeutic target for cardiac diseases

    Brief report:effects of sensory sensitivity and intolerance of uncertainty on anxiety in mothers of children with autism spectrum disorder

    Get PDF
    This study examined the relations between anxiety and individual characteristics of sensory sensitivity (SS) and intolerance of uncertainty (IU) in mothers of children with ASD. The mothers of 50 children completed the Hospital Anxiety and Depression Scale, the Highly Sensitive Person Scale and the IU Scale. Anxiety was associated with both SS and IU and IU was also associated with SS. Mediation analyses showed direct effects between anxiety and both IU and SS but a significant indirect effect was found only in the model in which IU mediated between SS. This is the first study to characterize the nature of the IU and SS interrelation in predicting levels of anxiety
    • …
    corecore