11 research outputs found

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time, and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space. While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes, vast areas of the tropics remain understudied. In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity, but it remains among the least known forests in America and is often underrepresented in biodiversity databases. To worsen this situation, human-induced modifications may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge, it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost

    Mercury In The Waters Of The Jundiaí River, Sp, Brazil: The Role Of Dissolved Organic Matter

    No full text
    Many developing countries have regions of high demographic density, where untreated residuary waters from different sources are often discharged into rivers, streams and other water bodies. This paper discusses the reducing action of organic matter of anthropic origin on the mercury redox cycle in the Jundiaí River impacted by discharged wastes, and on the Piraí River, a non-impacted water body. The total mercury concentrations in these locations vary from 1.7 to 32 ng L -1 in the former and from 0.6 to 10.6 ng L -1 in the latter. Dissolved organic carbon concentrations of up to 68.3 and 6.5 mg L -1 were observed, confirming the higher impact on the Jundiaí River. It was found that an inverse correlation between the concentration of dissolved organic carbon and total mercury was stronger in the Jundiaí River, given that it receives higher organic loads, suggesting that organic matter exerts a reducing action on mercury, which is released as gas into the atmosphere. This correlation was not observed in the Piraí River, where the organic matter of natural origin is probably not sufficiently labile to act intensely upon the Hg redox cycle, favoring the metal transport. © 2012 Springer Science+Business Media B.V.185445456Akerblom, S., Meili, M., Bringmark, L., Johansson, K., Kleja, D.B., Bergkvist, B., Partitioning of Hg between solid and dissolved organic matter in the humus layer of boreal forests (2008) Water Air Soil Pollut, 189, pp. 239-252Barringer, J.L., Szabo, Z., Schneider, D., Atkinson, W.D., Gallagher, R.A., Mercury in ground water, septage, leach-field effluent, and soils in residential areas, New Jersey coastal plain (2006) Sci Total Environ, 361, pp. 144-162Benoit, J.M., Gilmour, C.C., Mason, R.P., Heyes, A., Sulfide controls on mercury speciation and bioavailability to methylating bacteria in sediment pore waters (1999) Environ Sci Technol, 33, pp. 951-957Bisinoti, M.C., Sargentini Jr., E., Jardim, W.F., Seasonal behavior of mercury species in waters and sediments from the Negro River basin, Amazon, Brazil (2007) J Braz Chem Soc, 18, pp. 544-553Bloom, N.S., Crecelius, E.A., Determination of mercury in seawater at subnanogram per liter levels (1983) Mar Chem, 14, pp. 49-59Boudou, A., Ribeyre, F., Aquatic ecotoxicology: from the ecosystem to the cellular and molecular levels (1997) Environ Health Perspect, 105 (SUPPL. 1), pp. 21-35Caron, S., Lucotte, M., Regional and seasonal inputs of mercury into Lake St. Pierre (St. Lawrence River), a major commercial and sports fisheries in Canada (2008) Water Air Soil Pollut, 195, pp. 85-97Chadwick, S.P., Babiarz, C.L., Hurley, J.P., Armstrong, D.E., Influences of iron, manganese, and dissolved organic carbon on the hypolimnetic cycling of amended mercury (2006) Sci Total Environ, 368, pp. 177-188(2005) Resolução n o 357, , CONAMA-Brazilian Environmental National Council, Brasília-DF: Diário Oficial da UniãoCovelli, S., Faganeli, J., de Vittor, C., Predonzani, S., Acquavita, A., Horvat, M., Benthic fluxes of mercury species in a lagoon environment (Grado Lagoon, Northern Adriatic Sea, Italy) (2008) Appl Geochem, 23, pp. 529-546de Oliveira, L.C., Sargentini Jr., E., Rosa, A.H., Rocha, J.C., Simões, M.L., Martin-Neto, L., da Silva, W.T.L., Serudo, R.L., The influence of seasonalness on the structural characteristics of aquatic humic substances extracted from Negro River (Amazon State) waters: interactions with Hg(II) (2007) J Braz Chem Soc, 18, pp. 860-868Dennis, I.F., Clair, T.A., Driscoll, C.T., Kamman, N., Chalmers, A., Shanley, J., Norton, S.A., Kahl, S., Distribution patterns of mercury in lakes and rivers of northeastern North America (2005) Ecotoxicology, 14, pp. 113-123Dong, W.M., Liang, L., Brooks, S., Southworth, G., Gu, B., Roles of dissolved organic matter in the speciation of mercury and methylmercury in a contaminated ecosystem in Oak Ridge, Tennessee (2009) Environ Chem, 7, pp. 94-102Drott, A., Lambertsson, L., Bjorn, E., Skyllberg, U., Do potential methylation rates reflect accumulated methyl mercury in contaminated sediments? (2008) Environ Sci Technol, 42, pp. 153-158Fadini, P.S., de Lima, F.A., Comportamento redox do mercúrio no Rio Jundiaí-SP (2007) 24th Brazilian Meeting of Sanitary and Environmental Engineering, , Belo Horizonte-MG, BrazilFadini, P.S., Jardim, W.F., Storage of natural water samples for total and reactive mercury analysis in PET bottles (2000) Analyst, 125, pp. 549-551Fadini, P.S., Jardim, W.F., Is the Negro River Basin (Amazon) impacted by naturally occurring mercury? (2001) Sci Total Environ, 275, pp. 71-82Fadini, P.S., Alciati, J.C., Barros, J.C.L., Guimarães, J.R., Origin and fate of Hg total in the Jundiaí City (Brazil) wastewater treatment plant (2004) RMZ Mat Geoenviron, 51, pp. 83-86Fang, G.-C., Yang, I.-L., Liu, C.K., Measure and modeling the ambient air particles and particle bound mercury Hg(p) at a traffic sampling site (2010) Amos Res, 97, pp. 97-105Fitzgerald, W.F., Lamborg, C.H., Hammerschmidt, C.R., Marine biogeochemical cycling of mercury (2007) Chem Rev, 107, pp. 641-662Fu, P., Wu, F., Liu, C., Wang, F., Li, W., Yue, L., Guo, Q., Fluorescence characterization of dissolved organic matter in an urban river and its complexation with Hg(II) (2007) Appl Geochem, 22, pp. 1668-1679Garcia, E., Amyot, M., Ariya, P.A., Relationship between DOC photochemistry and mercury redox transformations in temperate lakes and wetlands (2005) Geochim Cosmochim Acta, 69, pp. 1917-1924Garcia, E., Poulain, A.J., Amyot, M., Ariya, P.A., Diel variations in photoinduced oxidation of Hg 0 in freshwater (2005) Chemosphere, 59, pp. 977-981Haitzer, M., Aiken, G., Ryan, J., Binding of mercury(II) to aquatic humic substances: influence of pH and source of humic substances (2003) Environ Sci Technol, 37, pp. 2436-2441Han, S., Gill, G.A., Lehman, R.D., Choe, K.-Y., Complexation of mercury by dissolved organic matter in surface waters of Galveston Bay, Texas (2006) Mar Chem, 98, pp. 156-166Hatje, V., Costa, L.M., Korn, M.G.A., Cotrim, G., Speeding up HCl extractions by employing ultrasound energy to evaluate trace elements bioavailability in sediments (2009) J Braz Chem Soc, 20, pp. 846-852He, T., Lu, J., Yang, F., Feng, X., Horizontal and vertical variability of mercury species in pore water and sediments in small lakes in Ontario (2007) Sci Total Environ, 386, pp. 53-64Hung, J.-J., Lu, C.-C., Huh, C.-A., Liu, J.T., Geochemical controls on distributions and speciation of As and Hg in sediments along the Gaoping (Kaoping) Estuary-Canyon system off southwest Taiwan (2009) J Mar Syst, 76, pp. 479-495Jardim, W.F., Bisinoti, M.C., Fadini, P.S., Silva, G.S., Mercury redox chemistry in the Negro River Basin, Amazon: The role of organic matter and solar light (2010) Aquat Geochem, 16, pp. 267-278Khwaja, A.R., Bloom, P.R., Brezonik, P.L., Binding strength of methylmercury to aquatic NOM (2010) Environ Sci Technol, 44, pp. 6151-6156Lalonde, J.D., Amyot, M., Orvoine, J., Morel, F.M.M., Auclair, J.C., Ariya, P.A., Photoinduced oxidation of Hg 0 (aq) in the waters from the St. Lawrence estuary (2004) Environ Sci Technol, 38, pp. 508-514Liu, G., Cai, Y., Kalla, P., Scheidt, D., Richards, J., Scinto, L.J., Gaiser, E., Appleby, C., Mercury mass budget estimates and cycling seasonality in the Florida Everglades (2008) Environ Sci Technol, 42, pp. 1954-1960Morel, F.M.M., Kraepiel, A.M.L., Amyot, M., The chemical cycle and bioaccumulation of mercury (1998) Annu Rev Ecol Syst, 29, pp. 543-546O'Driscoll, N.J., Siciliano, S.D., Peak, D., Carignan, R., Lean, D.R.S., The influence of forestry activity on the structure of dissolved organic matter in lakes: Implications for mercury photoreactions (2006) Sci Tot Environ, 366, pp. 880-893(2007) Relatório de situação dos recursos hídricos das bacias PCJ de 2004 a 2006, , http://www.comitepcj.sp.gov.br/comitespcj.htm#, PCJ-Piracicaba, Capivari and Jundiai River Watershed Committee, Accessed 14 September 2010Peters, S.C., Wollenberg, J.L., Morris, D.P., Porter, J.A., Mercury emission to the atmosphere from experimental manipulation of DOC and UVR in mesoscale field chambers in a freshwater lake (2007) Environ Sci Technol, 41, pp. 7356-7362Ravichandran, M., Interactions between mercury and dissolved organic matter-a review (2004) Chemosphere, 55, pp. 319-331Schroeder, W.H., Munthe, J., Atmospheric mercury-an overview (1998) Atmos Environ, 32, pp. 809-822Silva, G.S., Jardim, W.F., Fadini, P.S., Elemental gaseous mercury flux at the water/air interface over the Negro River Basin, Amazon, Brazil (2006) Sci Total Environ, 368, pp. 189-198Silva, G.S., Bisinoti, M.C., Fadini, P.S., Magarelli, G., Jardim, W.F., Fostier, A.H., Major aspects of the mercury cycle in the Negro River Basin, Amazon (2009) J Braz Chem Soc, 20, pp. 1127-1134Silva, G.S., Jardim, W.F., Fadini, P.S., Photochemical dissolved gaseous mercury (DGM) formation/consumption in the Negro River Basin, Brazilian Amazon (2009) J Braz Chem Soc, 20, pp. 1549-1555Whalin, L., Kim, E.-H., Mason, R., Factors influencing the oxidation, reduction, methylation and demethylation of mercury species in coastal waters (2007) Mar Chem, 107, pp. 278-294Wu, F., Cai, Y., Evans, D., Dillon, P., Complexation between Hg(II) and dissolved organic matter in stream waters: an application of fluorescence spectroscopy (2004) Biogeochemistry, 71, pp. 339-351Zhong, H., Wang, W.-X., Effects of sediment composition on inorganic mercury partitioning, speciation and bioavailability in oxic surficial sediments (2008) Environ Pollut, 151, pp. 222-23

    Elemental Gaseous Mercury Flux At The Water/air Interface Over The Negro River Basin, Amazon, Brazil

    No full text
    The amount of dissolved gaseous mercury (DGM) released annually into the atmosphere by water bodies in each of the 18 major sub-basins of the Negro River tributaries has been estimated for the wet season and adopted for the entire year. Using Remote Sensors (RS) and the Geographic Information System (GIS), an estimate was made for the total flooded area during the period of the wet season (May-July), which corresponds to around 10% of the total basin area. The estimates of DGM evasive flux values were made during four scientific campaigns and ranged from 0.09 to 14 μg m- 2 y- 1. Mercury wet deposition to the same area was estimated using average values of the metal concentration in the rainwater (9.8 ng L- 1), which varies from 17 to 27 μg m- 2 year- 1. Considering the flooded area of the Negro River Basin as 69 000 km2, the total amount of mercury emitted by all bodies of water reaches nearly 0.26 ton year- 1, which represents not more than 2% of the total mercury found in wet deposition in this same area. © 2005 Elsevier B.V. All rights reserved.3681189198Asher, W.E., Karle, L.M., Higgins, B.J., Farley, P.J., Leifer, I.S., Monahanm, E.C., The effect of bubble plume size on the parameterization of air/seawater gas transfer velocities (1995) Air-water gas transfer, pp. 227-238. , Jahne B., and Monahan E.C. (Eds), Aeon VerlagBarbosa, A.C., Souza, J.R., Dorea, J.G., Jardim, W.F., Fadini, P.S., Mercury biomagnification in a tropical black water Negro River, Brazil (2003) Arch Environ Contam Toxicol, 45 (2), pp. 235-246Bisinoti, M.C., Jardim, W.F., Behavior of the methylmercury in the environment (2004) Quím Nova, 27 (4), pp. 593-600Bisinoti, M.C., Jardim, W.F., Production of organic mercury from Hg0: experiments using microcosms (2003) J Braz Chem Soc, 14 (2), pp. 244-248Bloom, N.S., Crecelius, E.A., Determination of mercury in seawater at sub-nanogram per liter levels (1983) Mar Chem, 14, pp. 49-59Bullock Jr., O.R., Katherine, A.B., Mapp, G.R., Langragian modeling of mercury air emission, transport and deposition: an analysis of model sensitivity to emissions uncertainty (1998) Sci Total Environ, 213, pp. 1-12Costa, M., Liss, P.S., Photoreduction of mercury in sea water and its possible implications for Hg0 air-sea fluxes (1999) Mar Chem, 68, pp. 87-95Dumarey, R., Temmerman, E., Dams, R., Hoste, J., The accuracy of the vapor-injection calibration method for the determination of mercury by amalgamation cold-vapor atomic-absorption spectrometry (1985) Anal Chim Acta, 170, pp. 337-340. , [APR]Fadini, P.S., Jardim, W.F., Is the Negro River Basin (Amazon) impacted by naturally occurring mercury? (2000) Sci Total Environ, 275 (1-3), pp. 71-82Fadini, P.S., Jardim, W.F., Storage of natural water samples for total and reactive mercury analysis in PET bottles (2000) Analyst, 125, pp. 549-551Ferrara, R., Mazzolai, B., Lanzilotta, E., Nucaro, E., Pirrone, N., Temporal trends in gaseous mercury evasion from the Mediterranean seawaters (2000) Sci Total Environ, 259, pp. 183-190Fitzgerald, W.F., Gill, G., A sub-nanogram determination of mercury by two-stage gold amalgamation and gas phase detection applied to atmosphere analysis (1979) Anal Chem, 51, pp. 1714-1720Fitzgerald, W.F., Engstron, R., Mason, R.P., Nater, E.A., The case for atmospheric mercury contamination in remote areas (1998) Environ Sci Technol, 32 (1), pp. 1-7Forlano, L., Hedgecock, I.M., Pirrone, N., Elemental gas phase atmospheric mercury as it interacts with the ambient aerosol and its subsequent speciation and deposition (2000) Sci Total Environ, 259, pp. 211-222Fosberg, B.R., Jardim, W.F., Zeidemann, V.K., The biogeochemistry of mercury in the Negro River basin (Brazilian Amazon) (1999) Mercury as a global pollutant-5th International Conference, May 23rd-27th 1999, Rio de Janeiro, Brazil, pp. 153-592. , Barbosa J., Melamed R., and Vilas Bôas R. (Eds), CETEM-Centro de Tecnologia Mineral, Rio de Janeiro, BrazilGardfeldt, K., Feng, X., Sommar, J., Lindqvist, O., Total gaseous mercury exchange between air and water at river and sea surfaces in Swedish coastal regions (2001) Atmos Environ, 35, pp. 3027-3038Gill, G.A., Fitzgerald, W.F., Picomolar mercury measurement in seawater and other materials using stannous chloride reduction and two-stage gold amalgamation with gas phase detection (1987) Mar Chem, 20, pp. 227-243Hanson, P.J., Lindberg, S.E., Tabberer, T.A., Owens, J.G., Kim, K.-H., Foliar exchange of mercury vapor: evidence for a compensation point (1995) Water Air Soil Pollut, 80, pp. 373-382Hedgecock, I.M., Pirrone, N., Mercury and photochemistry in the marine boundary layer-modelling studies suggest the in situ production of reactive gas phase mercury (2001) Atmos Environ, 35, pp. 3035-3062Lamborg, C.H., Rolfus, K.R., Fitzgerald, W.F., Kim, G., The atmospheric cycling and air-sea exchange of mercury species in the south and equatorial Atlantic Ocean (1999) Deep-Sea Res, 46, pp. 957-977Lin, C.-J., Pehkonen, S.O., The chemistry of atmospheric mercury: a review (1999) Atmos Environ, 33, pp. 2067-2079Lin, X., Tao, Y., A numerical modelling study on regional mercury budget for eastern North America (2003) Atmos Chem Phys Discuss, 3, pp. 983-1015Lindberg, S.E., Stratton, W.J., Atmospheric mercury speciation: concentrations and behavior of reactive gaseous mercury in ambient air (1998) Environ Sci Technol, 32, pp. 49-57Liss, P.S., Slater, P.G., Flux gases across the air-sea interface (1974) Nature, pp. 181-184Liss, P.S., Merlivat, L., Air-sea exchange rates: introduction and synthesis (1986) The role of air-sea exchange in geochemical cycling, pp. 113-127. , Buat-Menard P. (Ed), NATO ASI seriesMalm, O., Gold mining as a source of mercury exposure in the Brazilian Amazon (1998) Environ Res Section A, 77, pp. 73-78Mason, R.P., Fitzgerald, W.F., Mercury speciation in open ocean waters (1991) Water Air Soil Pollut, 56, pp. 779-789Mason, R.P., Fitzgerald, W.F., Morel, F.M.M., The biogeochemical cycling of elemental mercury - anthropogenic influences (1994) Geochim Cosmochim Acta, 58, pp. 3108-3191Mason, R.P., Lawson, N.M., Sheu, G.R., Annual and seasonal trends in mercury deposition in Maryland (2000) Atmos Environ, 34, pp. 1691-1701Mason, R.P., Lawson, N.M., Sullivan, K.A., The concentration, speciation and sources of mercury in Chesapeake Bay precipitation (1997) Atmos Environ, 31, pp. 3541-3550Meili, M., Bishop, K., Bringmark, L., Johansson, K., Munthe, J., Sverdrup, H., Vries, W., Critical levels of atmospheric pollution: criteria and concepts for operational modeling of mercury in forest and lake ecosystems (2003) Sci Total Environ, 304, pp. 83-106Miretsky, P., Bisinoti, M.C., Sorption of mercury (II) in Amazon soils from column studies (2005) Chemosphere, 60, pp. 1583-1589Miretsky, P., Bisinoti, M.C., Rocha, J.C., Jardim, W.F., Factors affecting Hg (II) adsorption in soils from the Rio Negro basin (Amazon) (2005) Quím Nova, 28 (3), pp. 438-443Pal, B., Ariya, P.A., Gas-phase HO center dot-initiated reactions of elemental mercury: kinetics, product studies, and atmospheric implications (2004) Environ Sci Technol, 38 (21), pp. 5555-5566Poissant, L., Casimir, R.A., Water-air and soil-air exchange rate of total gaseous mercury measured at background sites (1998) Atmos Environ, 32 (5), pp. 883-893Rolfhus, K.R., Fitzgerald, W.F., The evasion and spatial/temporal distribution of mercury species in Long Island Sound CT-NY (2001) Geochim Cosmochim Acta, 65 (3), pp. 407-418Roulet, M., Luccote, M., Saint-Aubin, A., The geochemistry of mercury in the central Amazonas soils developed on the Alter-do-Chão formation of the lower Tapajós River valley, Pará state, Brazil (1998) Sci Total Environ, 223, pp. 1-24Sanemasa, I., The solubility of elemental mercury vapor in water (1975) Bull Chem Soc Jpn, 48, pp. 1795-1798Schroeder, W.H., Munthe, J., Atmospheric mercury-an overview (1998) Atmos Environ, 32, pp. 809-822Slemr, F., Schuster, G., Seiler, W., Distribution, speciation, and budget of atmospheric mercury (1985) J Atmos Chem, 3, pp. 407-434Sombroek, W., Spatial and temporal patterns of Amazon rainfall: consequences for the planning of agricultural occupation and the protection of primary forests (2001) Ambio, 30 (7), pp. 388-396Vandal, G.M., Mason, R.P., Fitzgerald, F., Cycle of volatile mercury in temperate lakes (1991) Wat Air Soil Pollut, 56, pp. 791-803Wallschlager, D., Kock, H.H., Schroeder, W.H., Mechanism and significance of mercury volatilization from contaminated floodplains of the German river Elbe (2000) Atmos Environ, 34, pp. 3745-3755Wang, D., Shi, X., Wei, S., Accumulation and transformation of atmospheric mercury in soil (2003) Sci Total Environ, 304, pp. 209-214Wanninkhof, R., Relationship between wind speed and gas exchange over the ocean (1992) J Geophys Res, 97, pp. 7373-7382Wanninkhof, R., Knox, M., Chemical enhancement of CO2 exchange in natural waters (1996) Limnol Oceanogr, 41 (4), pp. 689-697Xiao, Z.F., Munthe, J., Schroeder, W.H., Lindqvist, O., Vertical fluxes of volatile mercury over forest soil and lake surfaces in Sweden (1991) Tellus Ser B Chem Phys Meteorol, 43 (3), pp. 267-27

    Color Reduction Of Black Liquor From Cotton Cellulose Industry Using Ozonation In An Alkaline Medium [ozonização Em Meio Básico Para Redução De Cor Do Licor Negro De Indústria De Celulose De Algodão]

    No full text
    Pulp and paper mills discharge large amounts of wastewater containing high concentrations of lignin, a coloring substance that is dangerous and presents high toxicity to the environment. In this study, ozonation in alkaline ambience was evaluated for color reduction in black liquor, generated in a cotton linter mill. It was observed that the ozonation time to reach 80% color reduction was higher at a lower initial ozone dose (0,4 gO3 L-1 h-1) in comparison to a higher initial ozone dose (4,3 gO3 L-1 h-1). On the other hand, the amount of consumed oxidant was lower at the lower ozone dose. It is suggested that molecular oxygen participates in the oxidation mechanism of colored compounds, which is initiated by hydroxyl radicals (•OH) formed during ozonation in alkaline ambience.1519398(2005) Standard Methods For the Examination of Water and Wastewater, , APHA/AWWA/WEF, 21th ed. American Public Health Association: Washington, DCBajpai, P., Mehna, A., Bajpai, P.K., Decolorization of kraft bleach plant effluent with the white-rot fungus trametes versicolor (1993) Process Biochemistry, 28 (6), pp. 377-384Beltran, F.J., Gonzalez, M., Gonzalez, J.F., Industrial wastewater advanced oxidation. part-i: Uv radiation in presence and absence of hydrogen peroxide (1997) Water Research, 31 (10), pp. 2405-2414Bertazzoli, R., Pelegrini, R., Descoloração e degradação de poluentes orgânicos em soluções aquosas através do processo fotoeletroquímico (2002) Química Nova, 25 (3), pp. 477-482Bijan, L., Mohseni, M., Using ozone to reduce recalcitrant compounds and to enhance biodegradability of pulp and paper effluents (2004) Water Science and Technology, 50 (3), pp. 173-182Kreetachat, T., Effects of ozonation process on lignin-derived compounds in pulp and paper mill effluents (2007) Journal of Hazardous Materials, 142 (1-2), pp. 250-257Ksibi, M., Photodegradation of lignin from black liquor using a UV/ TiO2 system (2003) Journal of Photochemistry & Photobiology A: Chemistry, 154 (2-3), pp. 211-218Langlais, B., Reckhow, D.A., Brink, D.R., (1991) Ozone In Water Treatment: Application and Engineering, , Chelsea: AWWA Research Foundation, Lewis PublishersLevenspiel, O., (2000) Engenharia Das Reações Químicas, , São Paulo, Editora Edgard Blücher LtdaMànsson, P., Oster, R., Ozonization of kraft lignin (1988) Nordic Pulp and Paper Research Journal, 3 (2), pp. 75-81Mantzavinos, D., Psillakis, E., Enhancement of biodegradability of industrial wastewaters by chemical oxidation pre-treatment (2004) Journal of Chemical Technology and Biotechnology, 79 (5), pp. 431-454Medeiros, D.R., Pires, E.C., Mohseni, M., Ozone oxidation of pulp and paper wastewater and its impact on molecular weight distribution of organic matter (2008) Ozone Science & Engineering, 30 (1), pp. 105-110Medeiros, D.R., Pires, E.C., Mohseni, M., Ozonização do efluente de extração alcalina e seu impacto sobre a biodegradabilidade e distribuição do peso molecular dos compostos orgânicos (2008) O Papel, 3, pp. 49-59Nakamura, Y., Daidai, M., Kobayashi, F., Ozonolysis mechanism of lignin model compounds and microbial treatment of organic acids produced (2004) Water Science and Technology, 50 (3), pp. 167-172Pan, X.M., Schuchmann, M.N., von Sonntag, C., Oxidation of benzene by the OH radical. A product and pulse radiolysis study in oxygenated aqueous solution (1993) Journal of The Chemical Society, 2 (3), pp. 289-297. , Perkin TransactionsSaroj, D.P., Mineralization of Some Natural Refractory Organic Compounds by Biodegradation and Ozonation (2005) Water Research, 39 (9), pp. 1921-1933Torrades, F., Experimental design of fenton and photo-fenton reactions for the treatment of cellulose bleaching effluents (2003) Chemosphere, 53 (10), pp. 1211-1220von Guntenu, U., Ozonation of drinking water: Part I. Oxidation kinetics and product formation (2003) Water Research, 37 (7), pp. 1443-1467Zaied, M., Bellakhal, N., Electrocoagulation treatment of black liquor from paper industry (2009) Journal of Hazardous Materials, 163 (2-3), pp. 995-100

    Acid Volatile Sulfides And Simultaneously Extracted Metals In The Assessment Of Freshwater Sediments [sulfetos Volatilizáveis Por Acidificação E Metais Extraídos Simultaneamente Na Avaliação De Sedimentos De água Doce]

    No full text
    This paper discusses the historical and methodological fundaments of the dynamics and quantification of acid volatile sulfides (AVS) and simultaneously extracted metals (SEM) in aquatic sediments. It also discusses the SEM/AVS relationship, which involves several controversial aspects such as sulfide stability, sulfide-organic matter interaction, and the inability to predict the toxicity of organic compounds in the environment. This relationship is an important tool for the inference of metal bioavailability. The use of ecotoxicological tests with target organisms regulated by international standards is also a relevant aspect.34916181628Manahan, S.E., (1999) Industrial Ecology: Environmental Chemistry and Hazardous Waste, , 1st ed., CRC: LewisAllen, H.E., Hall, R.H., Brisbin, T.D., (1980) Environ. Sci. Technol., 14, p. 411Berry, W.J., Hansen, D.J., Mahony, J.D., Robson, D.L., Di Toro, D.M., Shipley, B.P., Rogers, B., Boothman, W.S., (1996) Environ. Toxicol. Chem., 15, p. 2067Larner, B.L., Palmer, A.S., Seen, A.J., Townsend, A.T., (2008) Anal. Chim. Acta, 608, p. 147Van Der Geest, H.G., Paumen, M.L., (2008) Sci. Tot. Environ., 406, p. 419Araújo, R.P.A., Botta-Paschoal, C.M.R., Silvério, P.F., Almeida, F.V., Rodrigues, P.F., Umbuzeiro, G.A., Jardim, W.F., Mozeto, A.A., (2006) Environ. Toxicol. Chem., 25, p. 581Stronkhorst, J., Brils, J., Batty, J., Coquery, M., Gardner, M., Mannio, J., O'Donnell, C., Frintrop, P., (2004) Discussion Document on Sediment Monitoring Guidance for the EU Water Framework Directive, , Version 2, EU Water Framework Directive expert group on AMPS: Deltares (NL)Das, A.K., Chakraborty, R., Cervera, M.L., De La Guardia, M., (1995) Talanta, 42, p. 1007(2005) Procedures for the Derivation of Equilibrium Partitioning Sediment Benchmarks (ESBs) for the Protection of Benthic Organisms: Metal Mixtures (Cadmium Copper, Lead Nickel, Silver, and Zinc), , USEPA - United States Environmental Protection Agency, EPA-600-R- 02-011, Office of Research and Development: Washington DCMozeto, A.A., Umbuzeiro, G.A., Jardim, W.F., (2006) Métodos de Coleta Análises Físico-químicas e Ensaios Biológicos e Ecotoxicológicos de Sedimentos de Água doce, , 1a ed., Cubo Multimídia: São CarlosScheffer, E.W., Sodré, F.F., Grassi, M.T., (2007) Quim. Nova, 30, p. 332Marcussen, H., Dalsgaard, A., Holm, P.E., (2008) Environ. Pollut., 155, p. 41Wang, F., Chapman, P.M., (1999) Environ. Toxicol. Chem., 18, p. 2526Hansen, D.J., Mahony, J.D., Berry, W.J., Benyi, S.J., Corbin, J.M., Pratt, S.D., Di Toro, D.M., Abel, M.B., (1996) Environ. Toxicol. Chem., 15, p. 2126Di Toro, D.M., Mahony, J.D., Hansen, D.J., Berry, W.J., (1996) Environ. Toxicol. Chem., 15, p. 2168Rickard, D., Morse, J.W., (2005) Mar. Chem., 97, p. 141Yin, H.B., Fan, C.X., Ding, S.M., Zhang, L., Li, B., (2008) Bull. Environ. Contam. Toxicol., 80, p. 351Mozeto, A.A., Silvério, P.F., Soares, A., (2001) Sci. Total Environ., 266, p. 135Redfield, A.C., (1958) Am. Sci., 46, p. 206Soetaert, K., Hofmann, A.F., Middelburg, J.J., Meysman, F.J.R., Grennwood, J., (2007) Mar. Chem., 106, p. 380Gehlen, M., Mucci, A., Boudreau, B., (1999) Geochim. Cosmochim. Acta, 63, p. 2763Wu, F.C., Qing, H.R., Wan, G.J., Tang, D.G., Huang, R.G., Cai, Y.R., (1997) Water Air, Soil Pollut., 99, p. 381Mucci, A., Sundby, B., Gehlen, M., Arakaki, T., Zhong, S., Silverberg, N., (2000) Deep-Sea Res. Pt. II, 47, p. 733Froelich, P.N., Klinkhammer, G.P., Bender, M.L., Luedtke, N.A., Heath, G.R., Cullen, D., Dauphin, P., Maynard, V., (1979) Geochim. Cosmochim. Acta, 43, p. 1075Brüchert, V., Arnosti, C., (2003) Mar. Chem., 80, p. 171Abell, J., Laverman, A.M., Van Cappellen, P., (2009) Biogeochemistry, 94, p. 13Abril, G., Etcheber, H., Le Hir, P., Bassoullet, P., Boutier, B., Frankignoulle, M., (1999) Limnol. Oceanogr., 44, p. 1304Pallud, C., Meile, C., Laverman, A.M., Abell, J., Van Cappellen, P., (2007) Mar. Chem., 106, p. 256Canavan, R.W., Slomp, C.P., Jourabchi, P., Van Cappellen, P., Laverman, A.M., Van Der Berg, G., (2006) Geochim. Cosmochim. Acta, 70, p. 2836Fossing, H., Ferdelman, T.G., Berg, P., (2000) Geochim. Cosmochim. Acta, 64, p. 897Chernicaro, C.A.L., (1997) Princípios do Tratamento Biológico de Águas Residuárias - Volume 5: Reatores Anaeróbios, , 1a ed., DESA/UFMG: Belo HorizonteForterre, P., (2010) Orig. Life Evol. Biosph., 40, p. 151Matthews, D.A., Effler, S.W., Driscoll, C.T., ÓDonell, S.M., Matthews, C.M., (2008) Limnol. Oceanogr., 53, p. 743Driscoll, C., Effler, S.W., Doerr, S.M., (1994) Environ. Sci. Technol., 28, p. 1211Wallmann, K., Aloisi, G., Haeckel, M., Obzhirov, A., Pavlova, G., Tischenko, P., (2006) Geochim. Cosmochim. Acta, 70, p. 3905Ogrinc, N., Hintelmann, H., Eckley, C., Lojen, S., (2003) Hydrobiologia, 494, p. 207Valentine, D.L., Reeburgh, W.S., (2000) Environ. Microbiol., 2, p. 477Valentine, D.L., Blanton, D.C., Reeburgh, W.S., (2000) Arch. Microbiol., 174, p. 415Hallam, S.J., Putnam, N., Preston, C.M., Detter, J.C., Rokshar, D., Richardson, P.M., DeLong, E.F., (2004) Science, 305, p. 1457Caldwell, S.L., Laidler, J.R., Brewer, E.A., Eberly, J.O., Sandborgh, S.C., Colwell, F.S., (2008) Environ. Sci. Technol., 42, p. 6791Moran, J.J., Beal, E.J., Vrentas, J.M., Orphan, V.J., Freeman, K.H., House, C.H., (2008) Environ. Microbiol., 10, p. 162Lesven, L., Gao, Y., Billon, G., Leermakers, M., Ouddane, B., Fischer, J.-C., Baeyens, W., (2008) Sci. Total Environ., 407, p. 447Burton, E.D., Bush, R.T., Sullivan, L.A., Johnston, S.G., Hocking, R.K., (2008) Chem. Geo., 253, p. 64Mahony, J.D., Di Toro, D.M., Gonzalez, A.M., Curto, M., Dilg, M., De Rosa, L.D., Sparrow, L.A., (1996) Environ. Toxicol. Chem., 15, p. 2187Cooper, D.C., Morse, J.W., (1999) Aquat. Geochem., 5, p. 87Morse, J.W., Rickard, D., (2004) Environ. Sci. Technol., 38, pp. 131AVan Der Welle, M.E.W., Cuppens, M., Lamers, L.P.M., Roelofs, J.G.M., (2006) Environ. Toxicol. Chem., 25, p. 1592Di Toro, D.M., Zarba, C.S., Hansen, D.J., Berry, W.J., Swartz, R.C., Cowan, C.E., Pavlou, S.P., Paquin, P.R., (1991) Environ. Toxicol. Chem., 10, p. 1541Di Toro, D.M., Mahony, J.D., Hansen, D.J., Scott, K.J., Hicks, M.B., Mayr, S.M., Redmond, M.S., (1990) Environ. Toxicol. Chem., 9, p. 1487Ankley, G.T., Mattson, V.R., Leonard, E.N., West, C.W., Bennett, J.L., (1993) Environ. Toxicol. Chem., 12, p. 315Morse, J.W., Luther III, G.W., (1999) Geochim. Cosmochim. Acta, 63, p. 3373Allen, H.E., Fu, G., Deng, B., (1993) Environ. Toxicol. Chem., 12, p. 1441Peterson, G.S., Ankley, G.T., Leonard, E.N., (1996) Environ. Toxicol. Chem., 15, p. 2147Nizoli, E.C., Luiz-Silva, W., (2009) Quim. Nova, 32, p. 365Graham, A.M., Wadhawan, A.R., Bouwer, E.J., (2009) Environ. Toxicol. Chem., 28, p. 471Gonzalez, A.M., (2002) Environ. Toxicol. Chem., 21, p. 980Echols, K.R., Brumbaugh, W.G., Orazio, C.E., May, T.W., Poulton, B.C., Peterman, P.H., (2008) Arch. Environ. Contam. Toxicol., 55, p. 161Rearick, M.S., Gilmour, C.C., Heyes, A., Mason, R.P., (2005) Environ. Toxicol. Chem., 24, p. 3043Leonard, E.N., Cotter, A.M., Ankley, G.T., (1996) Environ. Toxicol. Chem., 15, p. 1479Roulier, J.L., Tusseau-Vuillemin, M.H., Coquery, M., Geffard, O., Garric, J., (2008) Chemosphere, 70, p. 925Fagnani, E., (2009) Tese de Doutorado, , Universidade Estadual de Campinas, BrasilDesrosiers, M., Gagnon, C., Masson, S., Martel, L., Babut, M.P., (2008) Sci. Total Environ., 389, p. 101Besser, J.M., Brumbaugh, W.G., Ivey, C.D., Ingersoll, C.G., Moran, P.W., (2008) Arch. Environ. Contam. Toxicol., 54, p. 557Hansen, D.J., Berry, W.J., Mahony, J.D., Boothman, W.S., Di Toro, D.M., Robson, D.L., Ankley, G.T., Pesch C, .E., (1996) Environ. Toxicol. Chem., 15, p. 2080Cooper, D.C., Morse, J.W., (1998) Environ. Sci. Technol., 32, p. 1076Li, F., Wen, Y.-M., Zhu, P.-T., (2008) Bull. Environ. Contam. Toxicol., 81, p. 90Chappaz, A., Gobeil, C., Tessier, A., (2008) Geochim. Cosmochim. Acta, 72, p. 6027Bell, R.A., Kramer, J.R., (1999) Environ. Toxicol. Chem., 18, p. 9Chen, S.-Y., Lin, J.-G., (2009) J. Hazard. Mater., 161, p. 893Silva, G.S., Jardim, W.F., Fadini, P.S., (2006) Sci. Total Environ., 368, p. 189Jardim, W.F., Bisinoti, M.C., Fadini, P.S., Silva, G.S., (2010) Aquat. Geochem., 16, p. 267Silva, G.S., Jardim, W.F., Fadini, P.S., (2009) J. Braz. Chem. Soc., 20, p. 1549Silva, G.S., Bisinoti, M.C., Fadini, P.S., Magarelli, G., Jardim, W.F., Fostier, A.-H., (2009) J. Braz. Chem. Soc., 20, p. 1127Chibunda, R.T., Pereka, A.E., Tungaraza, C., (2008) Phys. Chem. Earth, 33, p. 738Morel, F.M.M., Kraepiel, A.M.L., Amyot, M., (1998) Annu. Rev. Ecol. Syst., 29, p. 543Benoit, J.M., Gilmour, C.C., Mason, R.P., Heyes, A., (1999) Environ. Sci. Technol., 33, p. 951Belzile, N., Lang, C.-Y., Chen, Y.-W., Wang, M., (2008) Sci. Total Environ., 405, p. 226Liu, G., Cai, Y., Kalla, P., Scheidt, D., Richards, J., Scinto, L.J., Gaiser, E., Appleby, C., (2008) Environ. Sci. Technol., 42, p. 1954He, P.-J., Xiao, Z., Shao, L.-M., Yu, J.-Y., Lee, D.-J., (2006) J. Hazard. Mater., B137, p. 1385Oikawa, K., Mitsui, H., Ohtani, H., Ishida, K., (2000) ISIJ Int., 40, p. 182Ryan, M.P., Williams, D.E., Chater, R.J., Hutton, B.M., Mcphail, D.S., (2002) Nature, 415, p. 770Pan, T.J., Gesmundo, F., Niu, Y., (2007) Corros. Sci., 49, p. 1362Berry, W.J., Boothman, W.S., Serbst, J.R., Edwards, P.A., (2004) Environ. Toxicol. Chem., 23, p. 2981Besser, J.M., Brumbaugh, W.G., Kemble, N.E., May, T.W., Ingersoll, C.G., (2004) Environ. Sci. Technol., 38, p. 6210Becker, D.S., Long, E.R., Proctor, D.M., Ginn, T.C., (2006) Environ. Toxicol. Chem., 25, p. 2576Lan, Y., Deng, B., Kim, C., Thornton, E.C., Influence of soil minerals on chromium(VI) reduction by sulfide under anoxic conditions (2007) Geochemical Transactions, 8, p. 4. , DOI 10.1186/1467-4866-8-4(2004) Water Quality Analyses of Chromium in the Inner Harbor/Northwest Branch and Bear Creek Portions of Baltimore Harbor in Baltimore City and Baltimore County, , MDE - Maryland Department of Environment, Maryland, U.S. EPA: BaltimoreMartello, L., Fuchsman, P., Sorensen, M., Magar, V., Wenning, R.J., (2007) Arch. Environ. Contam. Toxicol., 53, p. 337Magar, V.S., Martello, L., Southworth, B., Fuchsman, P., Sorensen, M., Wenning, R.J., (2008) Sci. Total Environ., 394, p. 103Zazo, J.A., Paull, J.S., Jaffe, P.R., (2008) Environ. Pollut., 156, p. 29Lee, B.G., Lee, J.S., Luoma, S.N., Choi, H.J., Koh, C.H., (2000) Environ. Sci. Technol., 34, p. 4517De Lange, H.J., De Haas, E.M., Maas, H., Peeters, E.T.H.M., (2005) Chemosphere, 61, p. 1700Liber, K., Call, D.J., Markee, T.P., Schmude, K.L., Balcer, M.D., Whiteman, F.W., Ankley, G.T., (1996) Environ. Toxicol. Chem., 15, p. 2113Silvério, P.F., Fonseca, A.L., Botta-Paschoal, C.M.R., Mozeto, A.A., (2005) Aquat. Ecosyst. Health Manage., 8, p. 313Manahan, S.E., (2000) Environmental Chemistry, , 7th ed.CRC: LewisAlves, J.P.H., Passos, E.A., Garcia, C.A.B., (2007) J. Braz. Chem. Soc., 18, p. 748Farias, C.O., Hamacher, C., Wagener, A.L.R., Campos, R.C., Godoy, J.M., (2007) J. Braz. Chem. Soc., 18, p. 1194Machado, W., Villar, L.S., Monteiro, F.F., Viana, L.C.A., Santelli, R.E., (2010) J. Soil. Sediment., 10, p. 1606Mariani, C.F., Pompeo, M.L.M., (2008) J. Soil. Sediment., 8, p. 284Paixão, J.F., Oliveira, O.M.C., Dominguez, J.M.L., Coelho, A.C.D., Garcia, K.S., Carvalho, G.C., Magalhães, W.F., (2010) Mar. Pollut. Bull., 60, p. 474Schnitzler, D.C., Grassi, M.T., Quinaia, S.P., (2009) Quim. Nova, 32, p. 1315Martínez-Sánchez, M.J., Navarro, M.C., Pérez-Sirvent, C., Marimón, J., Vidal, J., García-Lorenzo, M.L., Bech, J., (2008) J. Geochem. Explor., 96, p. 171Ogendi, G.M., Brumbaugh, W.G., Hannigan, R.E., Farris, J.L., (2007) Environ. Toxicol. Chem., 26, p. 325Prica, M., Dalmacija, B., Roncevic, S., Krcmar, D., Becelic, M., (2008) Sci. Total Environ., 389, p. 235Jardim, W.F., Sodré, F.F., (2009) Quim. Nova, 32, p. 1083De Lange, H.J., Van Griethuysen, C., Koelmans, A.A., (2008) Environ. Pollut., 151, p. 243Ankley, G.T., (1996) Environ. Toxicol. Chem., 15, p. 2138Silvério, P.F., (2003) Tese de Doutorado, , Universidade de São Paulo, BrasilBuchman, M.F., (2008) NOAA Screening Quick Reference Tables, , NOAA OR&R Report 08-1, Office of Response and Restoration Division, National Oceanic and Atmospheric Administration: Seattle WA(2004) Resolução no 344, , CONAMA - Conselho Nacional do Meio Ambiente, de 25/3/, Diário Oficial da União, Brasília - DF, 2004(2005) Resolução no 357, , CONAMA - Conselho Nacional do Meio Ambiente, de 17/3/, Diário Oficial da União, Brasília - DF, 200

    Denitrification In A Simple Wastewater Treatment System [desnitrificação Em Um Sistema Simplificado De Tratamento De Esgoto]

    No full text
    In this research, three anaerobic filters were operated with a 9 hour hydraulic detention time, and its effluent was disposed on four sand filters' bed in different application rates. On the first sand filter, 50 L.m-2 were disposed once a day. On the second, the third and the fourth filters, the same load was disposed in twice, three and four times a day, distributed between 9 am and 4 pm, corresponding to rates of 100, 150 and 200 L.m-2.d-1. After the sand filter, the effluent was conducted to the denitrification reactors filled up with grit. As result, the sand filters have shown a great nitrification capacity and, after the external carbon adding, the denitrification reactor, where 50 L.m-2 was disposed a day, showed a decrease of 43.5% in N-total concentration.184381392(2005) Standard Methods for the Examination of Water and Wastewater, , AMERICAN PUBLIC HEALTH ASSOCIATION (APHA), AMERICAN WATER WORKS ASSOCIATION (AWWA), WATER ENVIRONMENT FEDERATION (WEF)., 21st ed. Washington DC, USA: American Public Health Association, 2005(1995) NBR 6502: Rochas e solos: Análise granulométrica conjunta, , ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS., São Paulo, 1995Resolução no 357 de 17 de março de 2005. Dispõe sobre a classificação dos corpos de água e diretrizes ambientais para o seu enquadramento, bem como estabelece as condições e padrões de lançamento de efluentes, e dá outras providências (2005) Diário Oficial da União, pp. 58-63. , http://www.mma.gov.br/port/conama/processos/61AA3835/LivroConama.pdf, BRASIL. CONSELHO NACIONAL DE MEIO AMBIENTE (CONAMA)., n. 53, de 18 de março de 2005,. Disponível em:. Acesso em: 28 nov. 2012Resolução no 357 de 17 de março de 2005. Dispõe sobre as condições e padrões de lançamento de efluentes, complementa e altera a Resolução no 357 (2011) Diário Oficial da União, pp. 58-63. , http://www.mma.gov.br/port/conama/processos/61AA3835/LivroConama.pdf, BRASIL. CONSELHO NACIONAL DE MEIO AMBIENTE (CONAMA)., n. 53, de 13 de maio De 2011,. Disponível em:. Acesso em: 28 nov. 2012Camargo, S.A.R., Nour, E.A.A., Bamboo as an anaerobic medium: Effect of filter column height (2001) Water Science and Technology, 44 (4), pp. 63-70Çeçen, F., Gonenç, I.E., Criteria for nitrification and denitrification of high-strength wastes in two upflow submerged filters (1995) Water Environmental Research, 67 (2), pp. 132-142Deliberação Normativa no 1 de 5 de maio de 2008. Estabelece normas e padrões para qualidade das águas, lançamento de efluentes nas coleções de águas, e dá outras providências (2008) Diário do Executivo de Minas Gerais, , http://http://www.siam.mg.gov.br/sla/download.pdf?idNorma=8151, CONSELHO ESTADUAL DE POLÍTICA AMBIENTAL (COPAM)., de 13 de maio de 2008. Disponível em:. Acesso em: 20 ago. 2013Dinçer, A.R., Kargi, F., Kinetics of sequential nitrification and denitrification processes (2000) Enzyme and Microbial Technolog, 27, pp. 37-42Eisentraeger, A., Klag, P., Vansbotter, B., Heymann, H., Dott, W., Denitrification of groundwater with methane as sole hydrogen donor (2001) Water Research, 35 (9), pp. 2261-2267(1994) Water quality for agriculture-Irrigation and drainage paper, , FAO-ORGANIZAÇÃO DAS NAÇÕES UNIDAS PARA AGRICULTURA E ALIMENTAÇÃOFaria, L.C., Pasquini, C., Flow-injection determination of inorganic forms of nitrogen by gas diffusion and conductimetry (1991) Analytical Chemical Acta, 245, pp. 183-190Foresti, E., Zaiat, M., Vallero, M., Anaerobic processes as the core technology for sustainable domestic wastewater treatment (2006) Review in Environmental Science and Biotechnology, 5, pp. 3-19Henze, M., Harremoes, P., Jansen, J.L.C., Arvin, E., (1997) Wastewater Treatment: Biological and Chemical Process, , Berlim: Springer. 2 edHer, J., Huang, J., Influences of carbon source and C/N ratio on nitrate/nitrite denitrification and carbon breakthrougn (1995) Bioresource Technology, 54, pp. 45-51(2003) Wastewater engineering, treatment, disposal and reuse, , METCALF e EDDY., 4 ed. Nova Iorque: McGraw-Hill, International EditionsSurampalli, R.Y., Tyagi, R.D., Scheible, O.K., Heidman, J.A., Nitrification, denitrification and phosphorus removal in sequential bath reactor (1997) Bioresearch Tecnhnology, 61, pp. 151-157Tonetti, A.L., Coraucci Filho, B., Nicolau, C.E., Barbosa, M., Tonon, D., Tratamento de esgoto e produção de água de reúso com o emprego de filtros de areia (2012) Revista Engenharia Sanitária e Ambiental, 17, pp. 287-294Tonetti, A.L., Coraucci Filho, B., Bertoncini, E.I., Oliveira, R.A., Stefanutti, R., Avaliação de um sistema simplificado de tratamento de esgotos visando a utilização em áreas rurais (2010) Revista Brasileira de Engenharia Agrícola e Ambiental, 14 (2), pp. 227-234(1993) Manual nitrogen control, , USEPA-UNITED STATES ENVIRONMENTAL PROTECTION AGENCY., Washington DC, EUAVan Haandel, A., Marais, G.O., (1999) Comportamento do sistema de lodos ativados, , Campina Grande: EPGRAFVan Rijn, J., Tal, Y., Schreier, H.J., Denitrification in recirculating systems: Theory and applications (2006) Aquacultural Engineering, 34, pp. 364-37

    Predictors of early discontinuation of dapagliflozin versus other glucose-lowering medications: a retrospective multicenter real-world study

    Get PDF
    Background and aims: In routine clinical practice, early discontinuation of newly initiated glucose-lowering medications (GLM) is relatively common. We herein evaluated if the clinical characteristics associated with early discontinuation of dapagliflozin were different from those associated with early discontinuation of other GLM. Methods: The DARWIN-T2D was a multicenter retrospective study conducted at diabetes specialist outpatient clinics in Italy. We included 2484 patients who were initiated on dapagliflozin in 2015\u20132016 and 14,801 patients who were initiated on other GLM (DPP-4 inhibitors, GLP-1 receptor agonists, or gliclazide) in the same period. After excluding patients who had not (yet) returned to follow-up, we compared the characteristics of patients who persisted on drug versus those who were no longer on drug at the first available follow-up after at least 3 months. Results: As compared to those who persisted on drug, patients who discontinued dapagliflozin (51.7%) were more often female, had higher baseline fasting plasma glucose (FPG), HbA1c, and eGFR, and less common use of metformin. Upon multiple regression, higher HbA1c, higher eGFR, and lower metformin use remained independently associated with early discontinuation. Among patients who had been initiated on other GLM, 41.7% discontinued. Variables independently associated with discontinuation were older age, longer diabetes duration, higher HbA1c, eGFR, and albumin excretion, more common use of insulin and less metformin. Conclusion: In routine clinical practice, all variables associated with dapagliflozin discontinuation were also associated with discontinuation of other GLM. Thus, despite a distinctive mechanism of action and a peculiar tolerability profile, no specific predictor of dapagliflozin discontinuation was detected

    La pharmacopée royale galénique et chimique de Moyse Charas

    No full text
    Cette thèse comporte trois parties distinctes : 1) Un aperçu de l'histoire médicale et pharmaceutique au XVIIème siècle. 2) La biographie de Moyse Charas, auteur de la Pharmacopée Royale. 3) Une étude de La Pharmacopée Royale Galénique et Chimique. Le XVIIème siècle a été marqué par de grandes découvertes comme, la circulation du sang par Harvey, la mise au point du microscope, des descriptions médicales de plus en plus précises, l'utilisation du quinquina. Certains médecins, s'attachèrent à ramener les esprits vers la clinique, l'observation et l'expérience. La pharmacopée Royale Galénique et Chimique est un ouvrage didactique, qui reflète les cours assurés par Moyse Charas au Jardin Royal des Plantes de Paris L'étude de la Pharmacopée chimique de Charas nous montre qu'au XVIIème siècle la distillation reste le procédé de prédilection des chimistes et que tout l'art de ces derniers consiste à l'appliquer aux matières les plus diverses, sinon les plus étranges.CHATENAY M.-PARIS 11-BU Pharma. (920192101) / SudocSudocFranceF
    corecore