47 research outputs found
Liouville field theory with heavy charges. II. The conformal boundary case
We develop a general technique for computing functional integrals with fixed
area and boundary length constraints. The correct quantum dimensions for the
vertex functions are recovered by properly regularizing the Green function.
Explicit computation is given for the one point function providing the first
one loop check of the bootstrap formula.Comment: LaTeX 26 page
Multi-score Learning for Affect Recognition: the Case of Body Postures
An important challenge in building automatic affective state
recognition systems is establishing the ground truth. When the groundtruth
is not available, observers are often used to label training and testing
sets. Unfortunately, inter-rater reliability between observers tends to
vary from fair to moderate when dealing with naturalistic expressions.
Nevertheless, the most common approach used is to label each expression
with the most frequent label assigned by the observers to that expression.
In this paper, we propose a general pattern recognition framework
that takes into account the variability between observers for automatic
affect recognition. This leads to what we term a multi-score learning
problem in which a single expression is associated with multiple values
representing the scores of each available emotion label. We also propose
several performance measurements and pattern recognition methods for
this framework, and report the experimental results obtained when testing
and comparing these methods on two affective posture datasets
True substrates: The exceptional resolution and unexceptional preservation of deep time snapshots on bedding surfaces
Abstract: Rock outcrops of the sedimentary–stratigraphic record often reveal bedding planes that can be considered to be true substrates: preserved surfaces that demonstrably existed at the sediment–water or sediment–air interface at the time of deposition. These surfaces have high value as repositories of palaeoenvironmental information, revealing fossilized snapshots of microscale topography from deep time. Some true substrates are notable for their sedimentary, palaeontological and ichnological signatures that provide windows into key intervals of Earth history, but countless others occur routinely throughout the sedimentary–stratigraphic record. They frequently reveal patterns that are strikingly familiar from modern sedimentary environments, such as ripple marks, animal trackways, raindrop impressions or mudcracks: all phenomena that are apparently ephemeral in modern settings, and which form on recognizably human timescales. This paper sets out to explain why these short‐term, transient, small‐scale features are counter‐intuitively abundant within a 3.8 billion year‐long sedimentary–stratigraphic record that is known to be inherently time‐incomplete. True substrates are fundamentally related to a state of stasis in ancient sedimentation systems, and distinguishable from other types of bedding surfaces that formed from a dominance of states of deposition or erosion. Stasis is shown to play a key role in both their formation and preservation, rendering them faithful and valuable archives of palaeoenvironmental and temporal information. Further, the intersection between the time–length scale of their formative processes and outcrop expressions can be used to explain why they are so frequently encountered in outcrop investigations. Explaining true substrates as inevitable and unexceptional by‐products of the accrual of the sedimentary–stratigraphic record should shift perspectives on what can be understood about Earth history from field studies of the sedimentary–stratigraphic record. They should be recognized as providing high‐definition information about the mundane day to day operation of ancient environments, and critically assuage the argument that the incomplete sedimentary–stratigraphic record is unrepresentative of the geological past
Assessing biomass based on canopy height profiles using airborne laser scanning data in eucalypt plantations
This study aimed to map the stem biomass of an even-aged eucalyptus plantation in southeastern Brazil based on canopy height profile (CHPs) statistics using wall-to-wall discrete return airborne laser scanning (ALS), and compare the results with alternative maps generated by ordinary kriging interpolation from field-derived measurements. The assessment of stem biomass with ALS data was carried out using regression analysis methods. Initially, CHPs were determined to express the distribution of laser point heights in the ALS cloud for each sample plot. The probability density function (pdf) used was the Weibull distribution, with two parameters that in a secondary task, were used as explanatory variables to model stem biomass. ALS metrics such as height percentiles, dispersion of heights, and proportion of points were also investigated. A simple linear regression model of stem biomass as a function of the Weibull scale parameter showed high correlation (adj.R2 = 0.89). The alternative model considering the 30th percentile and the Weibull shape parameter slightly improved the quality of the estimation (adj.R2 = 0.93). Stem biomass maps based on the Weibull scale parameter doubled the accuracy of the ordinary kriging approach (relative root mean square error = 6 % and 13 %, respectively)
Transplantation pulmonaire pour mucoviscidose et autres bronchectasies
International audienceNo abstract availabl
Single-cell bacterium identification with a SOI optical microcavity
International audiencePhotonic crystals and microcavities can act as on-chip nano-optical tweezers for identification or manipulation of biological objects. So far, virus and bacteria optical trapping has been achieved, their presence in the vicinity of the optical resonator being deduced from a shift of the resonant wavelength. Here we show that bacteria can not only be trapped but identified as well if the trapping time is long enough. A silicon on insulator microcavity with a properly tuned quality factor allows to achieve enhanced trapping times. By combining spatial and temporal observation of bacteria-cavity interaction, the optical identification of three different kinds of bacteria is demonstrated
Loss of the CBX7 protein expression correlates with a more aggressive phenotype in pancreatic cancer
Polycomb group (PcG) proteins function as multiprotein complexes and are part of a gene regulatory mechanism that determines cell fate during normal and pathogenic development. Several studies have implicated the deregulation of different PcG proteins in neoplastic progression. Pancreatic ductal adenocarcinoma is an aggressive neoplasm that follows a multistep model of progression through precursor lesions called pancreatic intraepithelial neoplasia (PanIN). Aim of this study was to investigate the role of PcG protein CBX7 in pancreatic carcinogenesis and to evaluate its possible diagnostic and prognostic significance. We analysed by immunohistochemistry the expression of CBX7 in 210 ductal pancreatic adenocarcinomas from resection specimens, combined on a tissue microarray (TMA) including additional 40 PanIN cases and 40 normal controls. The results were evaluated by using receiver operating characteristic (ROC) curve analysis for the selection of cut-off scores and correlated to the clinicopathological parameters of the tumours and the outcome of the patients. Expression of E-cadherin, a protein positively regulated by CBX7, was also assessed. A significantly differential, and progressively decreasing CBX7 protein expression was found between normal pancreatic tissue, PanINs and invasive ductal adenocarcinoma. Loss of CBX7 expression was associated with increasing malignancy grade in pancreatic adenocarcinoma, whereas the maintenance of CBX7 expression showed a trend toward a longer survival. Moreover, loss of E-cadherin expression was associated with loss of CBX7 and with a trend towards worse patient survival. These results suggest that CBX7 plays a role in pancreatic carcinogenesis and that its loss of expression correlates to a more aggressive phenotype