1,068 research outputs found

    Finite Size Scaling, Fisher Zeroes and N=4 Super Yang-Mills

    Full text link
    We investigate critical slowing down in the local updating continuous-time Quantum Monte Carlo method by relating the finite size scaling of Fisher Zeroes to the dynamically generated gap, through the scaling of their respective critical exponents. As we comment, the nonlinear sigma model representation derived through the hamiltonian of our lattice spin model can also be used to give a effective treatment of planar anomalous dimensions in N=4 SYM. We present scaling arguments from our FSS analysis to discuss quantum corrections and recent 2-loop results, and further comment on the prospects of extending this approach for calculating higher twist parton distributions.Comment: Lattice 2004(spin), Fermilab, June 21-26, 2004; 3 pages, 4 figure

    Coronal Fe XIV Emission During the Whole Heliosphere Interval Campaign

    Full text link
    Solar Cycle 24 is having a historically long and weak start. Observations of the Fe XIV corona from the Sacramento Peak site of the National Solar Observatory show an abnormal pattern of emission compared to observations of Cycles 21, 22, and 23 from the same instrument. The previous three cycles have shown a strong, rapid "Rush to the Poles" (previously observed in polar crown prominences and earlier coronal observations) in the parameter N(t,l,dt) (average number of Fe XIV emission features per day over dt days at time t and latitude l). Cycle 24 displays a weak, intermittent, and slow "Rush" that is apparent only in the northern hemisphere. If the northern Rush persists at its current rate, evidence from the Rushes in previous cycles indicates that solar maximum will occur in early 2013 or late 2012, at least in the northern hemisphere. At lower latitudes, solar maximum previously occurred when the time maximum of N(t,l,365) reached approximately 20{\deg} latitude. Currently, this parameter is at or below 30{\deg}and decreasing in latitude. Unfortunately, it is difficult at this time to calculate the rate of decrease in N(t,l,365). However, the southern hemisphere could reach 20{\deg} in 2011. Nonetheless, considering the levels of activity so far, there is a possibility that the maximum could be indiscernibleComment: 8 pages, 4 figures; Solar Physics Online First, 2011 http://www.springerlink.com/content/b5kl4040k0626647

    A note on the Painleve analysis of a (2+1) dimensional Camassa-Holm equation

    Full text link
    We investigate the Painleve analysis for a (2+1) dimensional Camassa-Holm equation. Our results show that it admits only weak Painleve expansions. This then confirms the limitations of the Painleve test as a test for complete integrability when applied to non-semilinear partial differential equations.Comment: Chaos, Solitons and Fractals (Accepted for publication

    Sufficient Covariate, Propensity Variable and Doubly Robust Estimation

    Full text link
    Statistical causal inference from observational studies often requires adjustment for a possibly multi-dimensional variable, where dimension reduction is crucial. The propensity score, first introduced by Rosenbaum and Rubin, is a popular approach to such reduction. We address causal inference within Dawid's decision-theoretic framework, where it is essential to pay attention to sufficient covariates and their properties. We examine the role of a propensity variable in a normal linear model. We investigate both population-based and sample-based linear regressions, with adjustments for a multivariate covariate and for a propensity variable. In addition, we study the augmented inverse probability weighted estimator, involving a combination of a response model and a propensity model. In a linear regression with homoscedasticity, a propensity variable is proved to provide the same estimated causal effect as multivariate adjustment. An estimated propensity variable may, but need not, yield better precision than the true propensity variable. The augmented inverse probability weighted estimator is doubly robust and can improve precision if the propensity model is correctly specified

    Numerical study of duality and universality in a frozen superconductor

    Full text link
    The three-dimensional integer-valued lattice gauge theory, which is also known as a "frozen superconductor," can be obtained as a certain limit of the Ginzburg-Landau theory of superconductivity, and is believed to be in the same universality class. It is also exactly dual to the three-dimensional XY model. We use this duality to demonstrate the practicality of recently developed methods for studying topological defects, and investigate the critical behavior of the phase transition using numerical Monte Carlo simulations of both theories. On the gauge theory side, we concentrate on the vortex tension and the penetration depth, which map onto the correlation lengths of the order parameter and the Noether current in the XY model, respectively. We show how these quantities behave near the critical point, and that the penetration depth exhibits critical scaling only very close to the transition point. This may explain the failure of superconductor experiments to see the inverted XY model scaling.Comment: 17 pages, 18 figures. Updated to match the version published in PRB (http://link.aps.org/abstract/PRB/v67/e014525) on 27 Jan 200

    Directed geometrical worm algorithm applied to the quantum rotor model

    Full text link
    We discuss the implementation of a directed geometrical worm algorithm for the study of quantum link-current models. In this algorithm Monte Carlo updates are made through the biased reptation of a worm through the lattice. A directed algorithm is an algorithm where, during the construction of the worm, the probability for erasing the immediately preceding part of the worm, when adding a new part,is minimal. We introduce a simple numerical procedure for minimizing this probability. The procedure only depends on appropriately defined local probabilities and should be generally applicable. Furthermore we show how correlation functions, C(r,tau) can be straightforwardly obtained from the probability of a worm to reach a site (r,tau) away from its starting point independent of whether or not a directed version of the algorithm is used. Detailed analytical proofs of the validity of the Monte Carlo algorithms are presented for both the directed and un-directed geometrical worm algorithms. Results for auto-correlation times and Green functions are presented for the quantum rotor model.Comment: 11 pages, 9 figures, v2 : Additional results and data calculated at an incorrect chemical potential replaced. Conclusions unchange

    Bose-Einstein Condensate in Weak 3d Isotropic Speckle Disorder

    Get PDF
    The effect of a weak three-dimensional (3d) isotropic laser speckle disorder on various thermodynamic properties of a dilute Bose gas is considered at zero temperature. First, we summarize the derivation of the autocorrelation function of laser speckles in 1d and 2d following the seminal work of Goodman. The goal of this discussion is to show that a Gaussian approximation of this function, proposed in some recent papers, is inconsistent with the general background of laser speckle theory. Then we propose a possible experimental realization for an isotropic 3d laser speckle potential and derive its corresponding autocorrelation function. Using a Fourier transform of that function, we calculate both condensate depletion and sound velocity of a Bose-Einstein condensate as disorder ensemble averages of such a weak laser speckle potential within a perturbative solution of the Gross-Pitaevskii equation. By doing so, we reproduce the expression of the normalfluid density obtained earlier within the treatment of Landau. This physically transparent derivation shows that condensate particles, which are scattered by disorder, form a gas of quasiparticles which is responsible for the normalfluid component

    On the Computational Complexity of Measuring Global Stability of Banking Networks

    Full text link
    Threats on the stability of a financial system may severely affect the functioning of the entire economy, and thus considerable emphasis is placed on the analyzing the cause and effect of such threats. The financial crisis in the current and past decade has shown that one important cause of instability in global markets is the so-called financial contagion, namely the spreading of instabilities or failures of individual components of the network to other, perhaps healthier, components. This leads to a natural question of whether the regulatory authorities could have predicted and perhaps mitigated the current economic crisis by effective computations of some stability measure of the banking networks. Motivated by such observations, we consider the problem of defining and evaluating stabilities of both homogeneous and heterogeneous banking networks against propagation of synchronous idiosyncratic shocks given to a subset of banks. We formalize the homogeneous banking network model of Nier et al. and its corresponding heterogeneous version, formalize the synchronous shock propagation procedures, define two appropriate stability measures and investigate the computational complexities of evaluating these measures for various network topologies and parameters of interest. Our results and proofs also shed some light on the properties of topologies and parameters of the network that may lead to higher or lower stabilities.Comment: to appear in Algorithmic

    Scaling critical behavior of superconductors at zero magnetic field

    Full text link
    We consider the scaling behavior in the critical domain of superconductors at zero external magnetic field. The first part of the paper is concerned with the Ginzburg-Landau model in the zero magnetic field Meissner phase. We discuss the scaling behavior of the superfluid density and we give an alternative proof of Josephson's relation for a charged superfluid. This proof is obtained as a consequence of an exact renormalization group equation for the photon mass. We obtain Josephson's relation directly in the form ρstν\rho_{s}\sim t^{\nu}, that is, we do not need to assume that the hyperscaling relation holds. Next, we give an interpretation of a recent experiment performed in thin films of YBa2Cu3O7δYBa_{2}Cu_{3}O_{7-\delta}. We argue that the measured mean field like behavior of the penetration depth exponent ν\nu' is possibly associated with a non-trivial critical behavior and we predict the exponents ν=1\nu=1 and α=1\alpha=-1 for the correlation lenght and specific heat, respectively. In the second part of the paper we discuss the scaling behavior in the continuum dual Ginzburg-Landau model. After reviewing lattice duality in the Ginzburg-Landau model, we discuss the continuum dual version by considering a family of scalings characterized by a parameter ζ\zeta introduced such that mh,02tζm_{h,0}^2\sim t^{\zeta}, where mh,0m_{h,0} is the bare mass of the magnetic induction field. We discuss the difficulties in identifying the renormalized magnetic induction mass with the photon mass. We show that the only way to have a critical regime with ν=ν2/3\nu'=\nu\approx 2/3 is having ζ4/3\zeta\approx 4/3, that is, with mh,0m_{h,0} having the scaling behavior of the renormalized photon mass.Comment: RevTex, 15 pages, no figures; the subsection III-C has been removed due to a mistak

    Aharonov-Bohm Physics with Spin II: Spin-Flip Effects in Two-dimensional Ballistic Systems

    Get PDF
    We study spin effects in the magneto-conductance of ballistic mesoscopic systems subject to inhomogeneous magnetic fields. We present a numerical approach to the spin-dependent Landauer conductance which generalizes recursive Green function techniques to the case with spin. Based on this method we address spin-flip effects in quantum transport of spin-polarized and -unpolarized electrons through quantum wires and various two-dimensional Aharonov-Bohm geometries. In particular, we investigate the range of validity of a spin switch mechanism recently found which allows for controlling spins indirectly via Aharonov-Bohm fluxes. Our numerical results are compared to a transfer-matrix model for one-dimensional ring structures presented in the first paper (Hentschel et al., submitted to Phys. Rev. B) of this series.Comment: 29 pages, 15 figures. Second part of a series of two article
    corecore