264 research outputs found

    On certain new exact solutions of a diffusive predator-prey system

    Full text link
    We construct exact solutions for a system of two nonlinear partial differential equations describing the spatio-temporal dynamics of a predator-prey system where the prey per capita growth rate is subject to the Allee effect. Using the (G′G)\big(\frac{G'}{G}\big) expansion method, we derive exact solutions to this model for two different wave speeds. For each wave velocity we report three different forms of solutions. We also discuss the biological relevance of the solutions obtained.Comment: Accepted for Publication in Commun. Nonlin. Sci. Num. Sim. (2012

    On the characterization of vector rogue waves in two-dimensional two coupled nonlinear Schr\"{o}dinger equations with distributed coefficients

    Full text link
    We construct vector rogue wave solutions of the two-dimensional two coupled nonlinear Schr\"{o}dinger equations with distributed coefficients, namely diffraction, nonlinearity and gain parameters through similarity transformation technique. We transform the two-dimensional two coupled variable coefficients nonlinear Schr\"{o}dinger equations into Manakov equation with a constraint that connects diffraction and gain parameters with nonlinearity parameter. We investigate the characteristics of the constructed vector rogue wave solutions with four different forms of diffraction parameters. We report some interesting patterns that occur in the rogue wave structures. Further, we construct vector dark rogue wave solutions of the two-dimensional two coupled nonlinear Schr\"{o}dinger equations with distributed coefficients and report some novel characteristics that we observe in the vector dark rogue wave solutions.Comment: Accepted for publication in The European Physical Journal

    Amplification of matter rogue waves and breathers in quasi-two-dimensional Bose-Einstein condensates

    Full text link
    We construct rogue wave and breather solutions of a quasi-two-dimensional Gross-Pitaevskii equation with a time-dependent interatomic interaction and external trap. We show that the trapping potential and an arbitrary functional parameter that present in the similarity transformation should satisfy a constraint for the considered equation to be integrable and yield the desired solutions. We consider two different forms of functional parameters and investigate how the density of the rogue wave and breather profiles vary with respect to these functional parameters. We also construct vector localized solutions of a two coupled quasi-two-dimensional Bose-Einstein condensate system. We then investigate how the vector localized density profiles modify in the constant density background with respect to the functional parameters. Our results may help to manipulate matter rogue waves experimentally in the two-dimensional Bose-Einstein condensate systems.Comment: 16 pages, Published in Eur. Phys. J.

    Dissipationless shock waves in repulsive Bose-Einstein condensates

    Full text link
    We consider formation of dissipationless shock waves in Bose-Einstein condensates with repulsive interaction between atoms. It is shown that big enough initial inhomogeneity of density leads to wave breaking phenomenon followed by generation of a train of dark solitons. Analytical theory is confirmed by numerical simulations.Comment: 7 pages, 5 figures in JPG forma

    Asymptotic dynamics of short-waves in nonlinear dispersive models

    Full text link
    The multiple-scale perturbation theory, well known for long-waves, is extended to the study of the far-field behaviour of short-waves, commonly called ripples. It is proved that the Benjamin-Bona-Mahony- Peregrine equation can propagates short-waves. This result contradict the Benjamin hypothesis that short-waves tends not to propagate in this model and close a part of the old controversy between Korteweg-de Vries and Benjamin-Bona-Mahony-Peregrine equations. We shown that a nonlinear (quadratic) Klein-Gordon type equation substitutes in a short-wave analysis the ubiquitous Korteweg-de Vries equation of long-wave approach. Moreover the kink solutions of phi-4 and sine-Gordon equations are understood as an all orders asymptotic behaviour of short-waves. It is proved that the antikink solution of phi-4 model which was never obtained perturbatively can be obtained by perturbation expansion in the wave-number k in the short-wave limit.Comment: to appears in Physical Review E. 4 pages, revtex file

    Multiple-Time Higher-Order Perturbation Analysis of the Regularized Long-Wavelength Equation

    Full text link
    By considering the long-wave limit of the regularized long wave (RLW) equation, we study its multiple-time higher-order evolution equations. As a first result, the equations of the Korteweg-de Vries hierarchy are shown to play a crucial role in providing a secularity-free perturbation theory in the specific case of a solitary-wave solution. Then, as a consequence, we show that the related perturbative series can be summed and gives exactly the solitary-wave solution of the RLW equation. Finally, some comments and considerations are made on the N-soliton solution, as well as on the limitations of applicability of the multiple scale method in obtaining uniform perturbative series.Comment: 15 pages, RevTex, no figures (to appear in Phys. Rev. E

    Solitons in tunnel-coupled repulsive and attractive condensates

    Full text link
    We study solitons in the condensate trapped in a double-well potential with far-separated wells, when the s-wave scattering length has different signs in the two parts of the condensate. By employing the coupled-mode approximation it is shown that there are unusual stable bright solitons in the condensate, with the larger share of atoms being gathered in the repulsive part. Such unusual solitons derive their stability from the quantum tunneling and correspond to the strong coupling between the parts of the condensate. The ground state of the system, however, corresponds to weak coupling between the condensate parts, with the larger share of atoms being gathered in the attractive part of the condensate.Comment: LaTex, 23 pages, 6 figures; revised version; to appear in Physical Review

    Mixed-isotope Bose-Einstein condensates in Rubidium

    Full text link
    We consider the ground state properties of mixed Bose-Einstein condensates of 87Rb and 85Rb atoms in the isotropic pancake trap, for both signs of the interspecies scattering length. In the case of repulsive interspecies interaction, there are the axially-symmetric and symmetry-breaking ground states. The threshold for the symmetry breaking transition, which is related to appearance of a zero dipole-mode, is found numerically. For attractive interspecies interactions, the two condensates assume symmetric ground states for the numbers of atoms up to the collapse instability of the mixture.Comment: Revised; 21 pages, 5 figures, submitted to Physical Review

    Linearizability of the Perturbed Burgers Equation

    Full text link
    We show in this letter that the perturbed Burgers equation ut=2uux+uxx+ϵ(3α1u2ux+3α2uuxx+3α3ux2+α4uxxx)u_t = 2uu_x + u_{xx} + \epsilon ( 3 \alpha_1 u^2 u_x + 3\alpha_2 uu_{xx} + 3\alpha_3 u_x^2 + \alpha_4 u_{xxx} ) is equivalent, through a near-identity transformation and up to order \epsilon, to a linearizable equation if the condition 3α1−3α3−3/2α2+3/2α4=03\alpha_1 - 3\alpha_3 - 3/2 \alpha_2 + 3/2 \alpha_4 = 0 is satisfied. In the case this condition is not fulfilled, a normal form for the equation under consideration is given. Then, to illustrate our results, we make a linearizability analysis of the equations governing the dynamics of a one-dimensional gas.Comment: 10 pages, RevTeX, no figure

    Dissipative Boussinesq System of Equations in the B\'enard-Marangoni Phenomenon

    Full text link
    By using the long-wave approximation, a system of coupled evolution equations for the bulk velocity and the surface perturbations of a B\'enard-Marangoni system is obtained. It includes nonlinearity, dispersion and dissipation, and it can be interpreted as a dissipative generalization of the usual Boussinesq system of equations. As a particular case, a strictly dissipative version of the Boussinesq system is obtained. Finnaly, some speculations are made on the nature of the physical phenomena described by this system of equations.Comment: 15 Pages, REVTEX (Version 3.0), no figure
    • …
    corecore