1,674 research outputs found
Sharp and fuzzy observables on effect algebras
Observables on effect algebras and their fuzzy versions obtained by means of
confidence measures (Markov kernels) are studied. It is shown that, on effect
algebras with the (E)-property, given an observable and a confidence measure,
there exists a fuzzy version of the observable. Ordering of observables
according to their fuzzy properties is introduced, and some minimality
conditions with respect to this ordering are found. Applications of some
results of classical theory of experiments are considered.Comment: 23 page
and
Recently Babar Collaboration reported a new state
and Belle Collaboration observed . We investigate the strong
decays of the excited states using the model. After
comparing the theoretical decay widths and decay patterns with the available
experimental data, we tend to conclude: (1) is probably the
state although the
assignment is not completely excluded; (2) seems unlikely to be
the and candidate; (3)
as either a or state is
consistent with the experimental data; (4) experimental search of
in the channels , , and
will be crucial to distinguish the above two possibilities.Comment: 18 pages, 7 figures, 2 tables. Some discussions added. The final
version to appear at EPJ
Spin-current modulation and square-wave transmission through periodically stubbed electron waveguides
Ballistic spin transport through waveguides, with symmetric or asymmetric
double stubs attached to them periodically, is studied systematically in the
presence of a weak spin-orbit coupling that makes the electrons precess. By an
appropriate choice of the waveguide length and of the stub parameters injected
spin-polarized electrons can be blocked completely and the transmission shows a
periodic and nearly square-type behavior, with values 1 and 0, with wide gaps
when only one mode is allowed to propagate in the waveguide. A similar behavior
is possible for a certain range of the stub parameters even when two-modes can
propagate in the waveguide and the conductance is doubled. Such a structure is
a good candidate for establishing a realistic spin transistor. A further
modulation of the spin current can be achieved by inserting defects in a
finite-number stub superlattice. Finite-temperature effects on the spin
conductance are also considered.Comment: 19 pages, 8 figure
Momentum transfer using chirped standing wave fields: Bragg scattering
We consider momentum transfer using frequency-chirped standing wave fields.
Novel atom-beam splitter and mirror schemes based on Bragg scattering are
presented. It is shown that a predetermined number of photon momenta can be
transferred to the atoms in a single interaction zone.Comment: 4 pages, 3 figure
Oscillating magnetoresistance in diluted magnetic semiconductor barrier structures
Ballistic spin polarized transport through diluted magnetic semiconductor
(DMS) single and double barrier structures is investigated theoretically using
a two-component model. The tunneling magnetoresistance (TMR) of the system
exhibits oscillating behavior when the magnetic field are varied. An
interesting beat pattern in the TMR and spin polarization is found for
different NMS/DMS double barrier structures which arises from an interplay
between the spin-up and spin-down electron channels which are splitted by the
s-d exchange interaction.Comment: 4 pages, 6 figures, submitted to Phys. Rev.
Studies of a three-stage dark matter and neutrino observatory based on multi-ton combinations of liquid xenon and liquid argon detectors
We study a three stage dark matter and neutrino observatory based on
multi-ton two-phase liquid Xe and Ar detectors with sufficiently low
backgrounds to be sensitive to WIMP dark matter interaction cross sections down
to 10E-47 cm^2, and to provide both identification and two independent
measurements of the WIMP mass through the use of the two target elements in a
5:1 mass ratio, giving an expected similarity of event numbers. The same
detection systems will also allow measurement of the pp solar neutrino
spectrum, the neutrino flux and temperature from a Galactic supernova, and
neutrinoless double beta decay of 136Xe to the lifetime level of 10E27 - 10E28
y corresponding to the Majorana mass predicted from current neutrino
oscillation data. The proposed scheme would be operated in three stages G2, G3,
G4, beginning with fiducial masses 1-ton Xe + 5-ton Ar (G2), progressing to
10-ton Xe + 50-ton Ar (G3) then, dependent on results and performance of the
latter, expandable to 100-ton Xe + 500-ton Ar (G4). This method of scale-up
offers the advantage of utilizing the Ar vessel and ancillary systems of one
stage for the Xe detector of the succeeding stage, requiring only one new
detector vessel at each stage. Simulations show the feasibility of reducing or
rejecting all external and internal background levels to a level <1 events per
year for each succeeding mass level, by utilizing an increasing outer thickness
of target material as self-shielding. The system would, with increasing mass
scale, become increasingly sensitive to annual signal modulation, the agreement
of Xe and Ar results confirming the Galactic origin of the signal. Dark matter
sensitivities for spin-dependent and inelastic interactions are also included,
and we conclude with a discussion of possible further gains from the use of
Xe/Ar mixtures
Smearing of Observables and Spectral Measures on Quantum Structures
An observable on a quantum structure is any -homomorphism of quantum
structures from the Borel -algebra of the real line into the quantum
structure which is in our case a monotone -complete effect algebras
with the Riesz Decomposition Property. We show that every observable is a
smearing of a sharp observable which takes values from a Boolean
-subalgebra of the effect algebra, and we prove that for every element
of the effect algebra there is its spectral measure
Spin relaxation: From 2D to 1D
In inversion asymmetric semiconductors, spin-orbit interactions give rise to
very effective relaxation mechanisms of the electron spin. Recent work, based
on the dimensionally constrained D'yakonov Perel' mechanism, describes
increasing electron-spin relaxation times for two-dimensional conducting layers
with decreasing channel width. The slow-down of the spin relaxation can be
understood as a precursor of the one-dimensional limit
Towards Resilient Roads to Storm-Surge Flooding:Case Study of Bangladesh
Operating roads are critical during emergency operations at a disaster area. Prolonged inundation of pavements accelerates rapid deterioration of pavements and increases maintenance cost. The upgrade of vulnerable pavements with a raised subgrade and gabion walls is proposed as the means to increase the resiliency of strategic roads vital during the emergency attention in the aftermath of a cyclone. Hence, optimal pavement management can be used to allocate upgrade and maintenance and rehabilitation (M&R) operations to reduce the damage and mitigate the geo-physical risk and community vulnerability before the disaster even occurs. A case study is presented for regional highways, arterial and collector roads of Barguna district in Bangladesh that is frequently affected by cyclones and storm surges. The geo-physical risk and vulnerability (GEOPHRIV) index of each road segments is estimated by integrating the geo-physical risk; community, structure and infrastructure vulnerabilities; and damage indices. Dynamic linear programming is applied to optimise M&R strategies and the conversion of strategic roads into resilient perpetual pavements. The same budget required to optimise roads condition is also used to guide the conversion of roads into perpetual pavements, therefore increasing the overall network resiliency. As expected, the results show that most of the annual budget is equally expended into the conversion or the resurfacing of pavements. The decision-making approach herein proposed is very useful to roads agencies around the world, because it provides them with the ability to increase the resiliency of their strategic network ex-ante any flooding disaster.</p
A measurement of the tau mass and the first CPT test with tau leptons
We measure the mass of the tau lepton to be 1775.1+-1.6(stat)+-1.0(syst.) MeV
using tau pairs from Z0 decays. To test CPT invariance we compare the masses of
the positively and negatively charged tau leptons. The relative mass difference
is found to be smaller than 3.0 10^-3 at the 90% confidence level.Comment: 10 pages, 4 figures, Submitted to Phys. Letts.
- …
