1,092 research outputs found

    Universality of random matrices in the microscopic limit and the Dirac operator spectrum

    Get PDF
    We prove the universality of correlation functions of chiral unitary and unitary ensembles of random matrices in the microscopic limit. The essence of the proof consists in reducing the three-term recursion relation for the relevant orthogonal polynomials into a Bessel equation governing the local asymptotics around the origin. The possible physical interpretation as the universality of the soft spectrum of the Dirac operator is briefly discussed

    Integrable Deformations of c^=1\hat{c}=1 Strings in Flux Backgrounds

    Full text link
    We study d=2 0A string theory perturbed by tachyon momentum modes in backgrounds with non-trivial tachyon condensate and Ramond-Ramond (RR) flux. In the matrix model description, we uncover a complexified Toda lattice hierarchy constrained by a pair of novel holomorphic string equations. We solve these constraints in the classical limit for general RR flux and tachyon condensate. Due to the non-holomorphic nature of the tachyon perturbations, the transcendental equations which we derive for the string susceptibility are manifestly non-holomorphic. We explore the phase structure and critical behavior of the theory.Comment: 39 pages, 4 figure

    Effect of Quantum Fluctuations in an Ising System on Small-World Networks

    Full text link
    We study quantum Ising spins placed on small-world networks. A simple model is considered in which the coupling between any given pair of spins is a nonzero constant if they are linked in the small-world network and zero otherwise. By applying a transverse magnetic field, we have investigated the effect of quantum fluctuations. Our numerical analysis shows that the quantum fluctuations do not alter the universality class at the ferromagnetic phase transition, which is of the mean-field type. The transition temperature is reduced by the quantum fluctuations and eventually vanishes at the critical transverse field Δc\Delta_c. With increasing rewiring probability, Δc\Delta_c is shown to be enhanced.Comment: 5 pages, 5 figure

    Annulus Amplitudes and ZZ Branes in Minimal String Theory

    Full text link
    We study the annulus amplitudes of (p,q) minimal string theory. Focusing on the ZZ-FZZT annulus amplitude as a target-space probe of the ZZ brane, we use it to confirm that the ZZ branes are localized in the strong-coupling region. Along the way we learn that the ZZ-FZZT open strings are fermions, even though our theory is bosonic! We also provide a geometrical interpretation of the annulus amplitudes in terms of the Riemann surface M_{p,q} that emerges from the FZZT branes. The ZZ-FZZT annulus amplitude measures the deformation of M_{p,q} due to the presence of background ZZ branes; each kind of ZZ-brane deforms only one A-period of the surface. Finally, we use the annulus amplitudes to argue that the ZZ branes can be regarded as "wrong-branch" tachyons which violate the bound \alpha<Q/2.Comment: 33 pages, new results in appendix, minor change

    Quantum Computing of Quantum Chaos in the Kicked Rotator Model

    Get PDF
    We investigate a quantum algorithm which simulates efficiently the quantum kicked rotator model, a system which displays rich physical properties, and enables to study problems of quantum chaos, atomic physics and localization of electrons in solids. The effects of errors in gate operations are tested on this algorithm in numerical simulations with up to 20 qubits. In this way various physical quantities are investigated. Some of them, such as second moment of probability distribution and tunneling transitions through invariant curves are shown to be particularly sensitive to errors. However, investigations of the fidelity and Wigner and Husimi distributions show that these physical quantities are robust in presence of imperfections. This implies that the algorithm can simulate the dynamics of quantum chaos in presence of a moderate amount of noise.Comment: research at Quantware MIPS Center http://www.quantware.ups-tlse.fr, revtex 11 pages, 13 figs, 2 figs and discussion adde

    Double Scaling Limits and Twisted Non-Critical Superstrings

    Full text link
    We consider double-scaling limits of multicut solutions of certain one matrix models that are related to Calabi-Yau singularities of type A and the respective topological B model via the Dijkgraaf-Vafa correspondence. These double-scaling limits naturally lead to a bosonic string with c ≤\leq 1. We argue that this non-critical string is given by the topologically twisted non-critical superstring background which provides the dual description of the double-scaled little string theory at the Calabi-Yau singularity. The algorithms developed recently to solve a generic multicut matrix model by means of the loop equations allow to show that the scaling of the higher genus terms in the matrix model free energy matches the expected behaviour in the topological B-model. This result applies to a generic matrix model singularity and the relative double-scaling limit. We use these techniques to explicitly evaluate the free energy at genus one and genus two.Comment: 32 pages, 3 figure

    Two-Dimensional Spectroscopy of Photospheric Shear Flows in a Small delta Spot

    Full text link
    In recent high-resolution observations of complex active regions, long-lasting and well-defined regions of strong flows were identified in major flares and associated with bright kernels of visible, near-infrared, and X-ray radiation. These flows, which occurred in the proximity of the magnetic neutral line, significantly contributed to the generation of magnetic shear. Signatures of these shear flows are strongly curved penumbral filaments, which are almost tangential to sunspot umbrae rather than exhibiting the typical radial filamentary structure. Solar active region NOAA 10756 was a moderately complex, beta-delta sunspot group, which provided an opportunity to extend previous studies of such shear flows to quieter settings. We conclude that shear flows are a common phenomenon in complex active regions and delta spots. However, they are not necessarily a prerequisite condition for flaring. Indeed, in the present observations, the photospheric shear flows along the magnetic neutral line are not related to any change of the local magnetic shear. We present high-resolution observations of NOAA 10756 obtained with the 65-cm vacuum reflector at Big Bear Solar Observatory (BBSO). Time series of speckle-reconstructed white-light images and two-dimensional spectroscopic data were combined to study the temporal evolution of the three-dimensional vector flow field in the beta-delta sunspot group. An hour-long data set of consistent high quality was obtained, which had a cadence of better than 30 seconds and sub-arcsecond spatial resolution.Comment: 23 pages, 6 gray-scale figures, 4 color figures, 2 tables, submitted to Solar Physic

    On The Problem of Particle Production in c=1 Matrix Model

    Full text link
    We reconsider and analyze in detail the problem of particle production in the time dependent background of c=1c=1 matrix model where the Fermi sea drains away at late time. In addition to the moving mirror method, which has already been discussed in hep-th/0403169 and hep-th/0403275, we describe yet another method of computing the Bogolubov coefficients which gives the same result. We emphasize that these Bogolubov coefficients are approximately correct for small value of the deformation parameter. We also study the time evolution of the collective field theory stress-tensor with a special point-splitting regularization. Our computations go beyond the approximation of the previous treatments and are valid at large coordinate distances from the boundary at a finite time and up-to a finite coordinate distance from the boundary at late time. In this region of validity our regularization produces a certain singular term that is precisely canceled by the collective field theory counter term in the present background. The energy and momentum densities fall off exponentially at large distance from the boundary to the values corresponding to the static background. This clearly shows that the radiated energy reaches the asymptotic region signaling the space-time decay.Comment: 37 pages, 5 figures. Section 6 is modified to clarify main accomplishments of the paper including a discussion comparing stress-tensor analysis with those preexisted in literature. Other modifications include minor changes in the text and addition of one reference. Version accepted for publication in JHE

    Homologous Flares and Magnetic Field Topology in Active Region NOAA 10501 on 20 November 2003

    Get PDF
    We present and interpret observations of two morphologically homologous flares that occurred in active region (AR) NOAA 10501 on 20 November 2003. Both flares displayed four homologous H-alpha ribbons and were both accompanied by coronal mass ejections (CMEs). The central flare ribbons were located at the site of an emerging bipole in the center of the active region. The negative polarity of this bipole fragmented in two main pieces, one rotating around the positive polarity by ~ 110 deg within 32 hours. We model the coronal magnetic field and compute its topology, using as boundary condition the magnetogram closest in time to each flare. In particular, we calculate the location of quasiseparatrix layers (QSLs) in order to understand the connectivity between the flare ribbons. Though several polarities were present in AR 10501, the global magnetic field topology corresponds to a quadrupolar magnetic field distribution without magnetic null points. For both flares, the photospheric traces of QSLs are similar and match well the locations of the four H-alpha ribbons. This globally unchanged topology and the continuous shearing by the rotating bipole are two key factors responsible for the flare homology. However, our analyses also indicate that different magnetic connectivity domains of the quadrupolar configuration become unstable during each flare, so that magnetic reconnection proceeds differently in both events.Comment: 24 pages, 10 figures, Solar Physics (accepted
    • …
    corecore