898 research outputs found

    Experimental and theoretical evidence for a hydrogen stabilized c 2x2 reconstruction of the P rich InP 001 surface

    Get PDF
    The formation of hydrogen bonds was investigated on the P rich InP 001 surface employing attenuated total reflection Fourier transform infrared spectroscopy, low energy electron diffraction, and total energy density functional theory calculations. Strong evidence was found for a c 2 2 2P 3H reconstruction with a higher hydrogen coverage than is characteristic for the metal organic chemical vapor deposition prepared hydrogen stabilized 2 2 2D 2H surface. The new surface reconstruction was formed upon exposure to atomic hydrogen. Complete transformation of all the metastable atomic configurations to form the new surface reconstruction was not achieved, since prior to this the surface began to deteriorate. The latter effect was monitored as the formation of In H bonds. Two observations, i.e., nearly complete screening of the infrared peaks for excitation with p polarized light and a pronounced redshift of P H peaks with increasing hydrogen coverage were attributed to dipole dipole interaction between the vibrating adsorbate

    Exact results for the reactivity of a single-file system

    Get PDF
    We derive analytical expressions for the reactivity of a Single-File System with fast diffusion and adsorption and desorption at one end. If the conversion reaction is fast, then the reactivity depends only very weakly on the system size, and the conversion is about 100%. If the reaction is slow, then the reactivity becomes proportional to the system size, the loading, and the reaction rate constant. If the system size increases the reactivity goes to the geometric mean of the reaction rate constant and the rate of adsorption and desorption. For large systems the number of nonconverted particles decreases exponentially with distance from the adsorption/desorption end.Comment: 4 pages, 2 figure

    Gluino Pair Production at Linear e^+e^- Colliders

    Get PDF
    We study the potential of high-energy linear e+ee^+e^- colliders for the production of gluino pairs within the Minimal Supersymmetric Standard Model (MSSM). In this model, the process e+eg~g~e^+e^-\to\tilde{g}\tilde{g} is mediated by quark/squark loops, dominantly of the third generation, where the mixing of left- and right-handed states can become large. Taking into account realistic beam polarization effects, photon and Z0Z^0-boson exchange, and current mass exclusion limits, we scan the MSSM parameter space for various e+ee^+e^- center-of-mass energies to determine the regions, where gluino production should be visible.Comment: 22 pages, 9 figure

    On MSSM charged Higgs boson production in association with an electroweak W boson at electron positron colliders

    Get PDF
    We present a calculation of the cross section for the process e+ e- --> W+/- H-/+ in the minimal supersymmetric standard model (MSSM) and the Two Higgs Doublet Model (THDM). We study the basic features of the MSSM prediction for some distinctive parameter scenarios. We find large effects from virtual squarks for scenarios with large mixing in the stop sector which can lead to a cross section vastly different from a THDM with identical Higgs sector parameters. We investigate this interesting behaviour in more detail by thoroughly scanning the MSSM parameter space for regions of large cross section. For a charged Higgs boson too heavy to be pair-produced at such a machine, it turns out that a large MSSM cross section with a good chance of observation is linked to a squark mass scale below 600 GeV and a considerable amount of mixing in either the stop and sbottom sector.Comment: 25 pages, 10 figures (two in colour). Substantially improved on the MSSM parameter restrictions taken into account. Added some reference

    Bounds on the mass of the b' quark, revisited

    Full text link
    Recent results from the DELPHI collaboration led us to review the present bounds on the b' quark mass. We use all available experimental data for m_b' > 96 GeV to constrain the b' quark mass as a function of the Cabibbo-Kobayashi-Maskawa elements in a sequential four generations model. We find that there is still room for a b' with a mass larger than 96 GeV.Comment: 9 pages and 7 figures. REVTEX

    Electroweak Precision Observables within a Fourth Generation Model with General Flavour Structure

    Full text link
    We calculate the contributions to electroweak precision observables (EWPOs) due to a fourth generation of fermions with the most general (quark-)flavour structure (but assuming Dirac neutrinos and a trivial flavour structure in the lepton sector). The new-physics contributions to the EWPOs are calculated at one-loop order using automated tools (FeynArts/FormCalc). No further approximations are made in our calculation. We discuss the size of non-oblique contributions arising from Z--quark--anti-quark vertex corrections and the dependence of the EWPOs on all CKM mixing angles involving the fourth generation. We find that the electroweak precision observables are sensitive to two of the fourth-generation mixing angles and that the corresponding constraints on these angles are competitive with those obtained from flavour physics. For non-trivial 4x4 flavour structures, the non-oblique contributions lead to relative corrections of several permille and should be included in a global fit

    Precise Prediction for M_W in the MSSM

    Full text link
    We present the currently most accurate evaluation of the W boson mass, M_W, in the Minimal Supersymmetric Standard Model (MSSM). The full complex phase dependence at the one-loop level, all available MSSM two-loop corrections as well as the full Standard Model result have been included. We analyse the impact of the different sectors of the MSSM at the one-loop level with a particular emphasis on the effect of the complex phases. We discuss the prediction for M_W based on all known higher-order contributions in representative MSSM scenarios. Furthermore we obtain an estimate of the remaining theoretical uncertainty from unknown higher-order corrections.Comment: 38 pages, 25 figures. Minor corrections, additional reference

    Supersymmetric effects in top quark decay into polarized W-boson

    Full text link
    We investigate the one-loop supersymmetric QCD (SUSY-QCD) and electroweak (SUSY-EW) corrections to the top quark decay into a b-quark and a longitudinal or transverse W-boson. The corrections are presented in terms of the longitudinal ratio \Gamma(t-->W_L b)/\Gamma(t--> W b) and the transverse ratio \Gamma(t-->W_- b)/\Gamma(t--> W b). In most of the parameter space, both SUSY-QCD and SUSY-EW corrections to these ratios are found to be less than 1% in magnitude and they tend to have opposite signs. The corrections to the total width \Gamma(t-->W b) are also presented for comparison with the existing results in the literature. We find that our SUSY-EW corrections to the total width differ significantly from previous studies: the previous studies give a large correction of more than 10% in magnitude for a large part of the parameter space while our results reach only few percent at most.Comment: Version in PRD (explanation and refs added

    Static quantities of the W boson in the SU_L(3) X U_X(1) model with right-handed neutrinos

    Full text link
    The static electromagnetic properties of the WW boson, Δκ\Delta \kappa and ΔQ\Delta Q, are calculated in the SU_L(3)} \times U_X(1) model with right-handed neutrinos. The new contributions from this model arise from the gauge and scalar sectors. In the gauge sector there is a new contribution from a complex neutral gauge boson Y0Y^0 and a singly-charged gauge boson Y±Y^\pm. The mass of these gauge bosons, called bileptons, is expected to be in the range of a few hundreds of GeV according to the current bounds from experimental data. If the bilepton masses are of the order of 200 GeV, the size of their contribution is similar to that obtained in other weakly coupled theories. However the contributions to both ΔQ\Delta Q and Δκ\Delta \kappa are negligible for very heavy or degenerate bileptons. As for the scalar sector, an scenario is examined in which the contribution to the WW form factors is identical to that of a two-Higgs-doublet model. It is found that this sector would not give large corrections to Δκ\Delta \kappa and ΔQ\Delta Q.Comment: New material included. Final version to apppear in Physical Review

    Search for the standard model Higgs boson decaying to a bbˉb\bar{b} pair in events with no charged leptons and large missing transverse energy using the full CDF data set

    Get PDF
    We report on a search for the standard model Higgs boson produced in association with a vector boson in the full data set of proton-antiproton collisions at s=1.96\sqrt{s} = 1.96 TeV recorded by the CDF II detector at the Tevatron, corresponding to an integrated luminosity of 9.45 fb1^{-1}. We consider events having no identified charged lepton, a transverse energy imbalance, and two or three jets, of which at least one is consistent with originating from the decay of a bb quark. We place 95% credibility level upper limits on the production cross section times standard model branching fraction for several mass hypotheses between 90 and 150GeV/c2150 \mathrm{GeV}/c^2. For a Higgs boson mass of 125GeV/c2125 \mathrm{GeV}/c^2, the observed (expected) limit is 6.7 (3.6) times the standard model prediction.Comment: Accepted by Phys. Rev. Let
    corecore