293 research outputs found

    Screening and Deconfinement of Sources in Finite Temperature SU(2) Lattice Gauge Theory

    Full text link
    Deconfinement and screening of higher-representation sources in finite-temperature SU(2)SU(2) lattice gauge theory is investigated by both analytical and numerical means. The effective Polyakov-line action at strong coupling is simulated by an efficient cluster-updating Monte Carlo algorithm for the case of d ⁣= ⁣4d\!=\!4 dimensions. The results compare very favourably with an improved mean-field solution. The limit d ⁣→ ⁣∞d\!\to\!\infty of the SU(2)SU(2) theory is shown to be highly singular as far as critical behaviour is concerned. In that limit the leading amplitudes of higher representation Polyakov lines vanish at strong coupling, and subleading exponents become dominant. Each of the higher-representation sources then effectively carry with them their own critical exponents.Comment: 13pages+7figures, CERN-TH-7222/94 One reference added, else unchange

    Alternative Solution of Strong CP

    Get PDF
    In this talk I begin with some general discussion of the history of CP violation, then move on to aspects of a spontaneous CP violation model including the production of new particles at LHC, implications for B decay, generalized Cabibbo mixing and a reevaluation of kaon CP violation. Finally there is a summary.Comment: 4 pages Latex. Talk at Fifth IFT Workshop: Axions. March 199

    Global effects of local sound-speed perturbations in the Sun: A theoretical study

    Full text link
    We study the effect of localized sound-speed perturbations on global mode frequencies by applying techniques of global helioseismology on numerical simulations of the solar acoustic wave field. Extending the method of realization noise subtraction (e.g. Hanasoge et al. 2007) to global modes and exploiting the luxury of full spherical coverage, we are able to achieve very highly resolved frequency differences that are used to study sensitivities and the signatures of the thermal asphericities. We find that (1) global modes are almost twice as sensitive to sound-speed perturbations at the bottom of the convection zone as in comparison to anomalies well in the radiative interior (râ‰Č0.55R⊙r\lesssim0.55 R_\odot), (2) the mm-degeneracy is lifted ever so slightly, as seen in the aa coefficients, and (3) modes that propagate in the vicinity of the perturbations show small amplitude shifts (∌0.5\sim 0.5%).Comment: Submitted to Solar Physic

    Polyakov Loops versus Hadronic States

    Get PDF
    The order parameter for the pure Yang-Mills phase transition is the Polyakov loop which encodes the symmetries of the Z_N center of the SU(N) gauge group. On the other side the physical degrees of freedom of any asymptotically free gauge theory are hadronic states. Using the Yang-Mills trace anomaly and the exact Z_N symmetry we construct a model able to communicate to the hadrons the information carried by the order parameter.Comment: RevTex4 2-col., 6 pages, 2 figures. Typos fixed and added a paragraph in the conclusion

    Meridional Circulation and Global Solar Oscillations

    Get PDF
    We investigate the influence of large-scale meridional circulation on solar p-modes by quasi-degenerate perturbation theory, as proposed by \cite{lavely92}. As an input flow we use various models of stationary meridional circulation obeying the continuity equation. This flow perturbs the eigenmodes of an equilibrium model of the Sun. We derive the signatures of the meridional circulation in the frequency multiplets of solar p-modes. In most cases the meridional circulation leads to negative average frequency shifts of the multiplets. Further possible observable effects are briefly discussed.Comment: 14 pages, 5 figures, submittted to Solar Physics Topical Issue "HELAS

    Punctuated equilibria and 1/f noise in a biological coevolution model with individual-based dynamics

    Full text link
    We present a study by linear stability analysis and large-scale Monte Carlo simulations of a simple model of biological coevolution. Selection is provided through a reproduction probability that contains quenched, random interspecies interactions, while genetic variation is provided through a low mutation rate. Both selection and mutation act on individual organisms. Consistent with some current theories of macroevolutionary dynamics, the model displays intermittent, statistically self-similar behavior with punctuated equilibria. The probability density for the lifetimes of ecological communities is well approximated by a power law with exponent near -2, and the corresponding power spectral densities show 1/f noise (flicker noise) over several decades. The long-lived communities (quasi-steady states) consist of a relatively small number of mutualistically interacting species, and they are surrounded by a ``protection zone'' of closely related genotypes that have a very low probability of invading the resident community. The extent of the protection zone affects the stability of the community in a way analogous to the height of the free-energy barrier surrounding a metastable state in a physical system. Measures of biological diversity are on average stationary with no discernible trends, even over our very long simulation runs of approximately 3.4x10^7 generations.Comment: 20 pages RevTex. Minor revisions consistent with published versio

    Constructing and Characterising Solar Structure Models for Computational Helioseismology

    Get PDF
    In this paper, we construct background solar models that are stable against convection, by modifying the vertical pressure gradient of Model S (Christensen-Dalsgaard et al., 1996, Science, 272, 1286) relinquishing hydrostatic equilibrium. However, the stabilisation affects the eigenmodes that we wish to remain as close to Model S as possible. In a bid to recover the Model S eigenmodes, we choose to make additional corrections to the sound speed of Model S before stabilisation. No stabilised model can be perfectly solar-like, so we present three stabilised models with slightly different eigenmodes. The models are appropriate to study the f and p1 to p4 modes with spherical harmonic degrees in the range from 400 to 900. Background model CSM has a modified pressure gradient for stabilisation and has eigenfrequencies within 2% of Model S. Model CSM_A has an additional 10% increase in sound speed in the top 1 Mm resulting in eigenfrequencies within 2% of Model S and eigenfunctions that are, in comparison with CSM, closest to those of Model S. Model CSM_B has a 3% decrease in sound speed in the top 5 Mm resulting in eigenfrequencies within 1% of Model S and eigenfunctions that are only marginally adversely affected. These models are useful to study the interaction of solar waves with embedded three-dimensional heterogeneities, such as convective flows and model sunspots. We have also calculated the response of the stabilised models to excitation by random near-surface sources, using simulations of the propagation of linear waves. We find that the simulated power spectra of wave motion are in good agreement with an observed SOHO/MDI power spectrum. Overall, our convectively stabilised background models provide a good basis for quantitative numerical local helioseismology. The models are available for download from http://www.mps.mpg.de/projects/seismo/NA4/.Comment: 35 pages, 23 figures Changed title Updated Figure 1

    Partial Deconfinement in Color Superconductivity

    Full text link
    We analyze the fate of the unbroken SU(2) color gauge interactions for 2 light flavors color superconductivity at non zero temperature. Using a simple model we compute the deconfining/confining critical temperature and show that is smaller than the critical temperature for the onset of the superconductive state itself. The breaking of Lorentz invariance, induced already at zero temperature by the quark chemical potential, is shown to heavily affect the value of the critical temperature and all of the relevant features related to the deconfining transition. Modifying the Polyakov loop model to describe the SU(2) immersed in the diquark medium we argue that the deconfinement transition is second order. Having constructed part of the equation of state for the 2 color superconducting phase at low temperatures our results are relevant for the physics of compact objects featuring a two flavor color superconductive state.Comment: 9 pp, 4 eps-figs, version to appear in PR
    • 

    corecore