1,745 research outputs found
Structural identifiability of equivalent circuit models for Li-Ion batteries
Structural identifiability is a critical aspect of modelling that has been overlooked in the vast majority of Li-ion battery modelling studies. It considers whether it is possible to obtain a unique solution for the unknown model parameters from experimental data. This is a fundamental prerequisite of the modelling process, especially when the parameters represent physical battery attributes and the proposed model is utilised to estimate them. Numerical estimates for unidentifiable parameters are effectively meaningless since unidentifiable parameters have an infinite number of possible numerical solutions. It is demonstrated that the physical phenomena assignment to a two-RC (resistor–capacitor) network equivalent circuit model (ECM) is not possible without additional information. Established methods to ascertain structural identifiability are applied to 12 ECMs covering the majority of model templates used previously. Seven ECMs are shown not to be uniquely identifiable, reducing the confidence in the accuracy of the parameter values obtained and highlighting the relevance of structural identifiability even for relatively simple models. Suggestions are proposed to make the models identifiable and, therefore, more valuable in battery management system applications. The detailed analyses illustrate the importance of structural identifiability prior to performing parameter estimation experiments, and the algebraic complications encountered even for simple models. View Full-Tex
Estimation of health effects of prenatal methylmercury exposure using structural equation models
BACKGROUND: Observational studies in epidemiology always involve concerns regarding validity, especially measurement error, confounding, missing data, and other problems that may affect the study outcomes. Widely used standard statistical techniques, such as multiple regression analysis, may to some extent adjust for these shortcomings. However, structural equations may incorporate most of these considerations, thereby providing overall adjusted estimations of associations. This approach was used in a large epidemiological data set from a prospective study of developmental methyl-mercury toxicity. RESULTS: Structural equation models were developed for assessment of the association between biomarkers of prenatal mercury exposure and neuropsychological test scores in 7 year old children. Eleven neurobehavioral outcomes were grouped into motor function and verbally mediated function. Adjustment for local dependence and item bias was necessary for a satisfactory fit of the model, but had little impact on the estimated mercury effects. The mercury effect on the two latent neurobehavioral functions was similar to the strongest effects seen for individual test scores of motor function and verbal skills. Adjustment for contaminant exposure to poly chlorinated biphenyls (PCBs) changed the estimates only marginally, but the mercury effect could be reduced to non-significance by assuming a large measurement error for the PCB biomarker. CONCLUSIONS: The structural equation analysis allows correction for measurement error in exposure variables, incorporation of multiple outcomes and incomplete cases. This approach therefore deserves to be applied more frequently in the analysis of complex epidemiological data sets
Sperm Aneuploidy in Faroese Men with Lifetime Exposure to Dichlorodiphenyldichloroethylene (DDE) and Polychlorinated Biphenyl (PCB) Pollutants.
Background: Although it is known that sperm aneuploidy contributes to early pregnancy losses and congenital abnormalities, the causes are unknown and environmental contaminants are suspected.
Objectives: Our goal was to evaluate associations between lifetime exposure to organochlorines, specifically dichlorodiphenyldicholorethylene (p,p´-DDE) and polychlorinated biphenyls (PCBs), and sperm aneuploidy in men from the general population of the Faroe Islands, a population with a known history of organochlorine exposures.
Methods: Serum and semen samples from men (n = 90) 22–44 years old who participated in Faroe Islands health studies were analyzed for p,p´-DDE and PCBs 118, 138, 153, and 180 and adjusted for total lipids. Cord blood and age-14 serum were available for a subgroup (n = 40) and were also analyzed for p,p´-DDE and PCBs. Sperm fluorescence in situhybridization (FISH) for chromosomes X, Y, and 18 was used to determine rates of XX18, XY18, YY18, and total disomy. Multivariable adjusted Poisson models were used to estimate the relationship between organochlorine exposure and sperm disomy outcomes.
Results: Adult p,p´-DDE and total PCB serum concentrations were both associated with significantly increased rates of XX18, XY18, and total disomy. Age-14 p,p´-DDE and PCB concentrations were both associated with significantly increased rates of XX, XY, and total disomy in adulthood. Associations between cord blood concentrations of p,p´-DDE and PCBs and sperm disomy in adulthood were not consistently significant.
Conclusions: Organochlorine exposures measured at age 14 and in adulthood were associated with sperm disomy in this sample of high-exposure men, suggesting that the impacts of persistent pollutants on testicular maturation and function require further investigation
Scaling of Heteroepitaxial Island Sizes
Monte Carlo simulations of an atomistic solid-on-solid model are used to
study the effect of lattice misfit on the distribution of two-dimensional
islands sizes as a function of coverage in the submonolayer
aggregation regime of epitaxial growth. Misfit promotes the detachment of atoms
from the perimeter of large pseudomorphic islands and thus favors their
dissolution into smaller islands that relieve strain more efficiently. The
number density of islands composed of atoms exhibits scaling in the form
\mbox{)} where is the average island size. Unlike the
case of homoepitaxy, a rate equation theory based on this observation leads to
qualitatively different behavior than observed in the simulations.Comment: 10 pages, LaTeX 2.09, IC-DDV-94-00
Theory for Magnetic Anisotropy of Field-Induced Insulator-to-Metal Transition in Cubic Kondo Insulator YbB_{12}
Magnetization and energy gap of Kondo insulator YbB_{12} are calculated
theoretically based on the previously proposed tight-binding model composed of
Yb 5d and 4f orbitals. It is found that magnetization
curves are almost isotropic, naturally expected from the cubic symmetry, but
that the gap-closing field has an anisotropy: the gap closes faster for the
field in (100) direction than in (110) and (111) directions, in accord with the
experiments. This is qualitatively understood by considering the maximal
eigenvalues of the total angular momentum operators projected on each direction
of the magnetic field. But the numerical calculation based on the band model
yields better agreement with the experiment.Comment: 4 pages, 4 figures, to appear in J. Phys. Soc. Jp
Colossal Positive Magnetoresistance in a Doped Nearly Magnetic Semiconductor
We report on a positive colossal magnetoresistance (MR) induced by
metallization of FeSb, a nearly magnetic or "Kondo" semiconductor with 3d
ions. We discuss contribution of orbital MR and quantum interference to
enhanced magnetic field response of electrical resistivity.Comment: 5 pages, 5 figure
Skeletal concentrations of lead, cadmium, zinc, and silver in ancient North American Pecos Indians.
Bone samples of 14 prehistoric North American Pecos Indians from circa 1400 A.D. were analyzed for lead, cadmium, zinc, and silver by graphite furnace atomic absorption spectrometry to establish the baseline levels of these elements in an ancient North American population. Measurements of outer and inner bone fractions indicate the former were contaminated postmortem for lead, zinc, and cadmium. The contamination-adjusted average (mean +/- SD) level of lead (expressed as the ratio of atomic lead to atomic calcium) in bones of the Indians was 8.4 +/- 4.4 x 10(-7)), which was similar to ratios in bones of ancient Peruvians (0.9 to 7.7 x 10(-7)) and significantly lower than ratios in bones of modern adults in England and the United States (210 to 350 x 10(-7]. The adjusted average concentrations (microgram per gram dry weight) of biologic cadmium, silver, and zinc in the Pecos Indian bones were 0.032 +/- 0.013, 0.094 +/- 0.044, and 130 +/- 66, as compared to concentrations of 1.8, 0.01 to 0.44, and 75 to 170 in the bones of modern people, respectively. Therefore, cadmium concentrations in Pecos Indian bones are also approximately 50-fold lower than those of contemporary humans. These data support earlier findings that most previously reported natural concentrations of lead in human tissues are erroneously high and indicate that natural concentrations of cadmium are also between one and two orders of magnitude lower than contemporary concentrations
Spontaneous Polarisation Build up in a Room Temperature Polariton Laser
We observe the build up of strong (~50%) spontaneous vector polarisation in
emission from a GaN-based polariton laser excited by short optical pulses at
room temperature. The Stokes vector of emitted light changes its orientation
randomly from one excitation pulse to another, so that the time-integrated
polarisation remains zero. This behaviour is completely different to any
previous laser. We interpret this observation in terms of the spontaneous
symmetry breaking in a Bose-Einstein condensate of exciton-polaritons
- …