research

Theory for Magnetic Anisotropy of Field-Induced Insulator-to-Metal Transition in Cubic Kondo Insulator YbB_{12}

Abstract

Magnetization and energy gap of Kondo insulator YbB_{12} are calculated theoretically based on the previously proposed tight-binding model composed of Yb 5dϵ\epsilon and 4f Γ8\Gamma_8 orbitals. It is found that magnetization curves are almost isotropic, naturally expected from the cubic symmetry, but that the gap-closing field has an anisotropy: the gap closes faster for the field in (100) direction than in (110) and (111) directions, in accord with the experiments. This is qualitatively understood by considering the maximal eigenvalues of the total angular momentum operators projected on each direction of the magnetic field. But the numerical calculation based on the band model yields better agreement with the experiment.Comment: 4 pages, 4 figures, to appear in J. Phys. Soc. Jp

    Similar works