485 research outputs found

    Effects of candesartan cilexetil on carotid remodeling in hypertensive diabetic patients: the MITEC study

    Get PDF
    In hypertension and diabetes, early structural changes of the arterial wall precede or support atherosclerosis. There is evidence that some antihypertensive drugs exert an antiathero-sclerotic effect. Over 36 months, we investigated the effect of candesartan cilexetil (CC) on the common carotid intima-media thickness (IMT) vs amlodipine besylate (AML) in patients with type 2 diabetes and mild to moderate essential hypertension. After a 4-week wash-out period, 209 patients were randomized to either CC 8 mg or AML 5 mg once daily for a minimum of 1 month, after which, if BP was not normalized, the dosage was doubled, followed by the addition of hydrochlorothiazide 12.5 mg if necessary. No significant differences were observed between the two groups for change in IMT at M12 (−0.001 vs −0.027 mm/year for CC and AML respectively, p = 0.425), at M24 (−0.033 vs −0.019 mm per year respectively, p = 0.442), and at the last visit (−0.016 vs −0.039 mm per year respectively, p = 0.549). Within the group, comparisons did not show a significant difference in changes in IMT from baseline to the three visits. At the last visit, IMT regression was observed in 52.2% of patients receiving CC and in 51.3% of those receiving AML (p = 0.908). The augmentation in carotid lumen diameter from baseline was statistically greater in the AML group at the last visit (p = 0.034). BP variations during the study were similar in the two groups. The results of this study show that CC and AML treatments may alter identically the natural progression of carotid IMT in hypertensive type 2 diabetic patients

    Influence of blood glucose on heart rate and cardiac autonomic function. The DESIR study.

    Get PDF
    International audienceOBJECTIVES:   To evaluate in a general population, the relationships between dysglycaemia, insulin resistance and metabolic variables, and heart rate, heart rate recovery and heart rate variability. METHODS:   Four hundred and forty-seven participants in the Data from an Epidemiological Study on the Insulin Resistance syndrome (DESIR) study were classified according to glycaemic status over the preceding 9 years. All were free of self-reported cardiac antecedents and were not taking drugs which alter heart rate. During five consecutive periods: rest, deep breathing, recovery, rest and lying to standing, heart rate and heart rate varability were evaluated and compared by ANCOVA and trend tests across glycaemic classes. Spearman correlation coefficients quantified the relations between cardio-metabolic risk factors, heart rate and heart rate varability. RESULTS:   Heart rate differed between glycaemic groups, except during deep breathing. Between rest and deep-breathing periods, patients with diabetes had a lower increase in heart rate than others (P(trend) < 0.01); between deep breathing and recovery, the heart rate of patients with diabetes continued to increase, for others, heart rate decreased (P(trend) < 0.009). Heart rate was correlated with capillary glucose and triglycerides during the five test periods. Heart rate variability differed according to glycaemic status, especially during the recovery period. After age, sex and BMI adjustment, heart rate variability was correlated with triglycerides at two test periods. Change in heart rate between recovery and deep breathing was negatively correlated with heart rate variability at rest, (r=-0.113, P < 0.05): lower resting heart rate variability was associated with heart rate acceleration. CONCLUSIONS:   Heart rate, but not heart rate variability, was associated with glycaemic status and capillary glucose. After deep breathing, heart rate recovery was altered in patients with known diabetes and was associated with reduced heart rate variability. Being overweight was a major correlate of heart rate variability

    Diabetic Neuropathies: Update on Definitions, Diagnostic Criteria, Estimation of Severity, and Treatments

    Get PDF
    Preceding the joint meeting of the 19th annual Diabetic Neuropathy Study Group of the European Association for the Study of Diabetes (NEURODIAB) and the 8th International Symposium on Diabetic Neuropathy in Toronto, Canada, 13–18 October 2009, expert panels were convened to provide updates on classification, definitions, diagnostic criteria, and treatments of diabetic peripheral neuropathies (DPNs), autonomic neuropathy, painful DPNs, and structural alterations in DPNs

    Frequency-modulated electromagnetic neural stimulation (FREMS) as a treatment for symptomatic diabetic neuropathy: results from a double-blind, randomised, multicentre, long-term, placebo-controlled clinical trial

    Get PDF
    AIMS/HYPOTHESIS: The aim was to evaluate the efficacy and safety of transcutaneous frequency-modulated electromagnetic neural stimulation (frequency rhythmic electrical modulation system, FREMS) as a treatment for symptomatic peripheral neuropathy in patients with diabetes mellitus. METHODS: This was a double-blind, randomised, multicentre, parallel-group study of three series, each of ten treatment sessions of FREMS or placebo administered within 3 weeks, 3 months apart, with an overall follow-up of about 51 weeks. The primary endpoint was the change in nerve conduction velocity (NCV) of deep peroneal, tibial and sural nerves. Secondary endpoints included the effects of treatment on pain, tactile, thermal and vibration sensations. Patients eligible to participate were aged 18-75 years with diabetes for ≥ 1 year, HbA(1c) <11.0% (97 mmol/mol), with symptomatic diabetic polyneuropathy at the lower extremities (i.e. abnormal amplitude, latency or NCV of either tibial, deep peroneal or sural nerve, but with an evocable potential and measurable NCV of the sural nerve), a Michigan Diabetes Neuropathy Score ≥ 7 and on a stable dose of medications for diabetic neuropathy in the month prior to enrolment. Data were collected in an outpatient setting. Participants were allocated to the FREMS or placebo arm (1:1 ratio) according to a sequence generated by a computer random number generator, without block or stratification factors. Investigators digitised patients' date of birth and site number into an interactive voice recording system to obtain the assigned treatment. Participants, investigators conducting the trial, or people assessing the outcomes were blinded to group assignment. RESULTS: Patients (n = 110) with symptomatic neuropathy were randomised to FREMS (n = 54) or placebo (n = 56). In the intention-to-treat population (50 FREMS, 51 placebo), changes in NCV of the three examined nerves were not different between FREMS and placebo (deep peroneal [means ± SE]: 0.74 ± 0.71 vs 0.06 ± 1.38 m/s; tibial: 2.08 ± 0.84 vs 0.61 ± 0.43 m/s; and sural: 0.80 ± 1.08 vs -0.91 ± 1.13 m/s; FREMS vs placebo, respectively). FREMS induced a significant reduction in day and night pain as measured by a visual analogue scale immediately after each treatment session, although this beneficial effect was no longer measurable 3 months after treatment. Compared with the placebo group, in the FREMS group the cold sensation threshold was significantly improved, while non-significant differences were observed in the vibration and warm sensation thresholds. No relevant side effects were recorded during the study. CONCLUSIONS/INTERPRETATION: FREMS proved to be a safe treatment for symptomatic diabetic neuropathy, with immediate, although transient, reduction in pain, and no effect on NCV. TRIAL REGISTRATION: ClinicalTrials.gov NCT01628627. FUNDING: The clinical trial was sponsored by Lorenz Biotech (Medolla, Italy), lately Lorenz Lifetech (Ozzano dell'Emilia, Italy)

    Detection of silent myocardial ischemia in asymptomatic patients with diabetes: results of a randomized trial and meta-analysis assessing the effectiveness of systematic screening

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Most guidelines recommend a systematic screening of asymptomatic high risk patients with diabetes for silent ischemia, but the clinical benefit of this strategy has not been demonstrated compared with the simple control of cardiovascular risk factors. We sought to determine whether referring asymptomatic diabetic patients for screening of silent ischemia decreases the risk of cardiovascular events compared with usual care.</p> <p>Methods</p> <p>DYNAMIT was a prospective, randomized, open, blinded end-point multicenter trial run between 2000 and 2005, with a 3.5 year mean follow-up in ambulatory care in 45 French hospitals. The study included 631 male and female with diabetes aged 63.9 ± 5.1 years, with no evidence of coronary artery disease and at least 2 additional cardiovascular risk factors, receiving appropriate medical treatment. The patients were randomized centrally to either screening for silent ischemia using a bicycle exercise test or Dipyridamole Single Photon Emission Computed Tomography (N = 316), or follow-up without screening (N = 315). The main study end point was time to death from all causes, non-fatal myocardial infarction, non-fatal stroke, or heart failure requiring hospitalization or emergency service intervention. The results of a meta-analysis of DYNAMIT and DIAD, a similar study, are also presented.</p> <p>Results</p> <p>The study was discontinued prematurely because of difficulties in recruitment and a lower-than expected event rate. Follow-up was complete for 98.9% patients regarding mortality and for 97.5% regarding the main study end point. Silent ischemia detection procedure was positive or uncertain in 68 (21.5%) patients of the screening group. There was no significant difference between the screening and the usual care group for the main outcome (hazard ratio = 1.00 95%CI 0.59 to 1.71). The meta-analysis of these and DIAD results gave similar results, with narrower confidence intervals for each endpoint.</p> <p>Conclusions</p> <p>These results suggest that the systematic detection of silent ischemia in high-risk asymptomatic patients with diabetes is unlikely to provide any major benefit on hard outcomes in patients whose cardiovascular risk is controlled by an optimal medical treatment.</p> <p>Trial registration</p> <p>ClinicalTrials.gov: <a href="http://www.clinicaltrials.gov/ct2/show/NCT00627783">NCT00627783</a></p
    corecore