7 research outputs found

    Comparative genomics of the major parasitic worms

    Get PDF
    Parasitic nematodes (roundworms) and platyhelminths (flatworms) cause debilitating chronic infections of humans and animals, decimate crop production and are a major impediment to socioeconomic development. Here we report a broad comparative study of 81 genomes of parasitic and non-parasitic worms. We have identified gene family births and hundreds of expanded gene families at key nodes in the phylogeny that are relevant to parasitism. Examples include gene families that modulate host immune responses, enable parasite migration though host tissues or allow the parasite to feed. We reveal extensive lineage-specific differences in core metabolism and protein families historically targeted for drug development. From an in silico screen, we have identified and prioritized new potential drug targets and compounds for testing. This comparative genomics resource provides a much-needed boost for the research community to understand and combat parasitic worms

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Carotenoids and carotenes in the fruits of <i>Cucurbita maxima</i>, <i>C. moschata</i> and <i>C. pepo</i> under the conditions of Northwestern Russia

    No full text
    Cucurbits are among the most valuable vegetable crops widely used for food all over the world, being an important source of carotenoids and carotenes, biologically active substances with antioxidant and other types of activity. Their content largely depends on the Cucurbita species and varietal features. The Cucurbita collection of the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR) contains more than 3,000 accessions of five cultivated Cucurbita spp. and serves as the most important source of source material for developing new cultivars in order to expand the range of functional food products. The present research was aimed at studying the content of carotenoids and carotenes in the fruits of Cucurbita maxima Duch., C. pepo L. and C. moschata Duch. ex Poir. grown in Northwestern Russia, which is characterized by a short growing season and a low sum of active temperatures. The performed study revealed significant differences between the Cucurbita species and cultivars in terms of the content of carotenoids, total carotenes and β-carotene. In contrast to C. pepo, the accessions of C. maxima and C. moscato were characterized by a wide range of variation of these characters. A statistically significant effect of the flesh and fruit skin color on the content of carotenoids, carotenes and β-carotene in them was observed (p &lt; 0.001). The minimum amount of carotenoids, carotenes and β-carotene was found in the fruits with light yellow flesh, and the maximum in those with dark orange flesh. Cucurbit fruits with red skin accumulated more target compounds in contrast to the fruits with white skin. The identified Cucurbita accessions with high content of carotenes and carotenoids can be used as valuable source material for breeding cultivars with improved biochemical composition, which can broaden the range of functional food products when grown in the regions with unfavorable conditions for the production of this crop

    Bibliography of Dreissena polymorpha

    No full text
    corecore