128 research outputs found

    Covering Dimension of C*-Algebras and 2-Coloured Classification

    Get PDF
    Research partially supported by EPSRC (grant no. I019227/1-2), by NSF (grant no. DMS-1201385), by JSPS (the Grant-in-Aid for Research Activity Start-up 25887031), by NSERC (PDF, held by AT), by an Alexander von Humboldt foundation fellowship (held by SW) and by the DFG (SFB 878).Postprin

    Thermoregulatory, metabolic, and cardiovascular responses during 88 min of full-body ice immersion - A case study.

    Get PDF
    Exposure to extreme cold environments is potentially life-threatening. However, the world record holder of full-body ice immersion has repeatedly demonstrated an extraordinary tolerance to extreme cold. We aimed to explore thermoregulatory, metabolic, and cardiovascular responses during 88 min of full-body ice immersion. We continuously measured gastrointestinal temperature (Tgi ), skin temperature (Tskin), blood pressure, and heart rate (HR). Oxygen consumption (VO2 ) was measured at rest, and after 45 and 88 min of ice immersion, in order to calculate the metabolic heat production. Tskin dropped significantly (28-34°C to 4-15°C) and VO2 doubled (5.7-11.3 ml kg-1  min-1 ), whereas Tgi (37.6°C), HR (72 bpm), and mean arterial pressure (106 mmHg) remained stable during the first 30 min of cold exposure. During the remaining of the trial, Tskin and VO2 remained stable, while Tgi gradually declined to 37.0°C and HR and mean arterial blood pressure increased to maximum values of 101 bpm and 115 mmHg, respectively. Metabolic heat production in rest was 169 W and increased to 321 W and 314 W after 45 and 80 min of ice immersion. Eighty-eight minutes of full-body ice immersion resulted in minor changes of Tgi and cardiovascular responses, while Tskin and VO2 changed markedly. These findings may suggest that our participant can optimize his thermoregulatory, metabolic, and cardiovascular responses to challenge extreme cold exposure

    Compilation of basal metabolic and blood perfusion rates in various multi-compartment, whole-body thermoregulation models

    Full text link
    The assignments of basal metabolic rates (BMR), basal cardiac outputs (BCO) and basal blood perfusion rates (BBPR) were compared in nine multi-compartment, whole body thermoregulation models. The data are presented at three levels of detail: total body, specific body regions and regional body tissue layers. Differences in the assignment of these quantities among the compared models increased with the level of detail, in the above order. The ranges of variability in the total body BMR was 6.5% relative to the lowest value, with a mean of 84.3±2 Watts, and in the BCO it was 8% with a mean of 4.70±0.13 l/min. The least variability among the body regions is seen in the combined torso (shoulders, thorax and abdomen: ±7.8% BMR and ±5.9% BBPR) and in the combined head (head, face, and neck: ±9.9% BMR and ±10.9% BBPR), determined by the ratio of the standard deviation to the mean. Much more variability is apparent in the extremities with the most showing in the BMR of the feet (±117%), followed by the BBPR in the arms (±61.3%). In the tissue layers, most of the bone layers were assigned zero BMR and BBPR, except in the shoulders and in the extremities that were assigned non-zero values in a number of models. The next lowest values were assigned to the fat layers, with occasional zero values. Skin basal values were invariably non-zero but involved very low values in certain models, e.g., BBPR in the feet and the hands. Muscle layers were invariably assigned high values with the highest found in the thorax, abdomen and legs. The brain, lung and viscera layers were assigned the highest of all values of both basal quantities with those of the brain layers showing rather tight ranges of variability in both basal quantities.Average basal values of the "time-seasoned" models presented in this study could be useful as a first step in future modeling efforts, subject to appropriate adjustment of values to conform to most recently available and reliable data

    Trainability of cold induced vasodilatation in fingers and toes

    Get PDF
    Subjects that repeatedly have to expose the extremities to cold may benefit from a high peripheral temperature to maintain dexterity and tissue integrity. Therefore, we investigated if repeated immersions of a hand and a foot in cold water resulted in increased skin temperatures. Nine male and seven female subjects (mean 20.4; SD 2.2 years) immersed their right (trained) hand and foot simultaneously in 8°C water, 30 min daily for 15 days. During the pre and post-test (days 1 and 15, respectively) the left (untrained) hand and foot were immersed as well. Pain, tactile sensitivity and skin temperatures were measured every day. Mean (SD) toe temperature of the trained foot increased from 9.49°C (0.89) to 10.03°C (1.38) (p < 0.05). The trained hand, however, showed a drop in mean finger temperature from 9.28°C (0.54) to 8.91°C (0.44) (p < 0.001) and the number of cold induced vasodilation (CIVD) reactions decreased from 52% during the first test to 24% during the last test. No significant differences occurred in the untrained extremities. Pain diminished over time and tactile sensitivity decreased with skin temperature. The combination of less CIVD responses in the fingers after training, reduced finger skin temperatures in subjects that did show CIVD and the reduced pain and tactile sensitivity over time may lead to an increased risk for finger cold injuries. It is concluded that repeated cold exposure of the fingers does not lead to favorable adaptations, but may instead increase the injury risk

    A comparison of bioclimatic conditions on Franz Josef Land (the Arctic) between the turn of the nineteenth to twentieth century and present day

    Get PDF
    The paper presents the variability of meteorological conditions: air temperature, wind speed and relative air humidity; and biometeorological indices: wind chill temperature, predicted clothing insulation and accepted level of physical activity on Franz Josef Land (in Teplitz Bay and Calm Bay) in the years 1899–1931. It employs meteorological measurements taken during four scientific expeditions to the study area. The analysis mainly covered the period October–April, for which the most complete data set is available. For that period of the year, which includes the part of the year with the Franz Josef Land’s coldest air temperatures, the range and nature of changes in meteorological and biometeorological conditions between historical periods and the modern period (1981–2010) were studied. The data analysis revealed that during the three oldest expeditions (which took place in the years 1899–1914), the biometeorological conditions in the study area were more harsh to humans than in the modern period (1981–2010) or similarly harsh. In contrast, during the 1930/1931 expedition, which represents the Early Twentieth CenturyWarming (ETCW), conditions were clearly more favourable (including predicted clothing insulation being 0.3 clo lower and 4.0 °C higher wind chill temperature than conditions observed nowadays)

    Band structure of CuMnAs probed by optical and photoemission spectroscopy

    Get PDF
    5 pages, 5 figures + Supplementary InformationTetragonal phase of CuMnAs progressively appears as one of the key materials for antiferromagnetic spintronics due to efficient current-induced spin-orbit torques whose existence can be directly inferred from crystal symmetry. Theoretical understanding of spintronic phenomena in this material, however, relies on the detailed knowledge of electronic structure (band structure and corresponding wave functions) which has so far been tested only to a limited extent. We show that AC permittivity (obtained from ellipsometry) and UV photoelectron spectra agree with density functional calculations. Together with the x-ray diffraction and precession electron diffraction tomography, our analysis confirms recent theoretical claim [Phys.Rev.B 96, 094406 (2017)] that copper atoms occupy lattice positions in the basal plane of the tetragonal unit cell.We acknowledge support from National Grid Infrastructure MetaCentrum provided under the programme “Projects of Large Research, Development, and Innovations Infrastructures” (CESNET LM2015042); Grant Agency of the Czech Republic under Grant No. 15-13436S; CEDAMNF (CZ.02.1.01/0.0/0.0/15_003/0000358) of the Czech ministry of education (MƠMT) as well as its LM2015087 and LNSMLNSpin grants; Cariplo Foundation, Grant No. 2013-0726 (MAGISTER); Spanish MINECO under MAT2015-67593-P project and the ‘Severo Ochoa’ Programme (SEV-2015-0496); EU FET Open RIA Grant No. 766566; Engineering and Physical Sciences Research Council Grant No. EP/P019749/1. P.W. acknowledges support from the Royal Society through a University Research Fellowship.Peer reviewe

    Sleep, vigilance, and thermosensitivity

    Get PDF
    The regulation of sleep and wakefulness is well modeled with two underlying processes: a circadian and a homeostatic one. So far, the parameters and mechanisms of additional sleep-permissive and wake-promoting conditions have been largely overlooked. The present overview focuses on one of these conditions: the effect of skin temperature on the onset and maintenance of sleep, and alertness. Skin temperature is quite well suited to provide the brain with information on sleep-permissive and wake-promoting conditions because it changes with most if not all of them. Skin temperature changes with environmental heat and cold, but also with posture, environmental light, danger, nutritional status, pain, and stress. Its effect on the brain may thus moderate the efficacy by which the clock and homeostat manage to initiate or maintain sleep or wakefulness. The review provides a brief overview of the neuroanatomical pathways and physiological mechanisms by which skin temperature can affect the regulation of sleep and vigilance. In addition, current pitfalls and possibilities of practical applications for sleep enhancement are discussed, including the recent finding of impaired thermal comfort perception in insomniacs
    • 

    corecore