272 research outputs found

    Optical position meters analyzed in the non-inertial reference frames

    Full text link
    In the framework of General Relativity we develop a method for analysis of the operation of the optical position meters in their photodetectors proper reference frames. These frames are non-inertial in general due to the action of external fluctuative forces on meters test masses, including detectors. For comparison we also perform the calculations in the laboratory (globally inertial) reference frame and demonstrate that for certain optical schemes laboratory-based analysis results in unmeasurable quantities, in contrast to the detector-based analysis. We also calculate the response of the simplest optical meters to weak plane gravitational waves and fluctuative motions of their test masses. It is demonstrated that for the round-trip meter analysis in both the transverse-traceless (TT) and local Lorentz (LL) gauges produces equal results, while for the forward-trip meter corresponding results differ in accordance with different physical assumptions (e.g. procedure of clocks synchronization) implicitly underlying the construction of the TT and LL gauges.Comment: 10 pages, 2 figures; co-author added, added section VC with discussion of procedures of clocks synchronization, corrected sign in old Eq.17 (currently it is Eq.18

    Anomalous dynamic back-action in interferometers

    Full text link
    We analyze the dynamic optomechanical back-action in signal-recycled Michelson and Michelson-Sagnac interferometers that are operated off dark port. We show that in this case --- and in contrast to the well-studied canonical form of dynamic back-action on dark port --- optical damping in a Michelson-Sagnac interferometer acquires a non-zero value on cavity resonance, and additional stability/instability regions on either side of the resonance, revealing new regimes of cooling/heating of micromechanical oscillators. In a free-mass Michelson interferometer for a certain region of parameters we predict a stable single-carrier optical spring (positive spring and positive damping), which can be utilized for the reduction of quantum noise in future-generation gravitational-wave detectors.Comment: 9 pages, 5 figures. Paper reorganize

    Displacement-noise-free gravitational-wave detection with a single Fabry-Perot cavity: a toy model

    Full text link
    We propose a detuned Fabry-Perot cavity, pumped through both the mirrors, as \textit{a toy model} of the gravitational-wave (GW) detector partially free from displacement noise of the test masses. It is demonstrated that the noise of cavity mirrors can be eliminated, but the one of lasers and detectors cannot. The isolation of the GW signal from displacement noise of the mirrors is achieved in a proper linear combination of the cavity output signals. The construction of such a linear combination is possible due to the difference between the reflected and transmitted output signals of detuned cavity. We demonstrate that in low-frequency region the obtained displacement-noise-free response signal is much stronger than the fgw3f^3_{\textrm{gw}}-limited sensitivity of displacement-noise-free interferometers recently proposed by S. Kawamura and Y. Chen. However, the loss of the resonant gain in the noise cancelation procedure results is the sensitivity limitation of our toy model by displacement noise of lasers and detectors.Comment: 16 pages, 5 figures; extended discussion of basic mechanism of noise cancelation moved to new Sec. II (with new figure), added discussion of laser noise cancelation in Sec. VI D (with new figure

    Observation of generalized optomechanical coupling and cooling on cavity resonance

    Full text link
    Optomechanical coupling between a light field and the motion of a cavity mirror via radiation pressure plays an important role for the exploration of macroscopic quantum physics and for the detection of gravitational waves (GWs). It has been used to cool mechanical oscillators into their quantum ground states and has been considered to boost the sensitivity of GW detectors, e.g. via the optical spring effect. Here, we present the experimental characterization of generalized, that is, dispersive and dissipative optomechanical coupling, with a macroscopic (1.5mm)^2-sized silicon nitride (SiN) membrane in a cavity-enhanced Michelson-type interferometer. We report for the first time strong optomechanical cooling based on dissipative coupling, even on cavity resonance, in excellent agreement with theory. Our result will allow for new experimental regimes in macroscopic quantum physics and GW detection

    Charged Particles and the Electro-Magnetic Field in Non-Inertial Frames of Minkowski Spacetime: II. Applications: Rotating Frames, Sagnac Effect, Faraday Rotation, Wrap-up Effect

    Full text link
    We apply the theory of non-inertial frames in Minkowski space-time, developed in the previous paper, to various relevant physical systems. We give the 3+1 description without coordinate-singularities of the rotating disk and the Sagnac effect, with added comments on pulsar magnetosphere and on a relativistic extension of the Earth-fixed coordinate system. Then we study properties of Maxwell equations in non-inertial frames like the wrap-up effect and the Faraday rotation in astrophysics.Comment: This paper and the second one are an adaptation of arXiv 0812.3057 for publication on Int.J.Geom. Methods in Modern Phys. 36

    Interaction of plane gravitational waves with a Fabry-Perot cavity in the local Lorentz frame

    Get PDF
    We analyze the interaction of plane '+'-polarized gravitational waves with a Fabry-Perot cavity in the local Lorentz frame of the cavity input mirror outside of the range of long-wave approximation with the force of radiation pressure taken into account. The obtained detector response signal is represented as a sum of two parts: (i) the phase shift due to displacement of the movable mirror under the influence of gravitational wave and the force of light pressure, and (ii) the phase shift due to direct interaction of gravitational wave with light wave inside the cavity. We obtain formula for the movable mirror law of motion paying close attention to the phenomena of optical rigidity, radiative friction and direct coupling of gravitational wave to light wave. Some issues concerning the detection of high-frequency gravitational waves and the role of optical rigidity in it are discussed. We also examine in detail special cases of optical resonance and small detuning from it and compare our results with the known ones.Comment: 17 pages, 9 figures; corrected references [7,8,34], added 2 new references (currently [35,36]), added comments on (i) relativistic corrections, (ii) detector angular pattern, (iii) quantized electromagnetic field, increased font in figure

    Trade-off between quantum and thermal fluctuations in mirror coatings yields improved sensitivity of gravitational-wave interferometers

    Full text link
    We propose a simple way to improve the laser gravitational-wave detectors sensitivity by means of reduction of the number of reflective coating layers of the core optics mirrors. This effects in the proportional decrease of the coating thermal noise, the most notorious among the interferometers technical noise sources. The price for this is the increased quantum noise, as well as high requirements for the pump laser power and power at the beamsplitter. However, as far as these processes depend differently on the coating thickness, we demonstrate that a certain trade-off is possible, yielding a 20-30% gain (for diverse gravitational wave signal types and interferometer configurations), providing that feasible values of laser power and power on the beamsplitter are assumed.Comment: 11 pages, 4 figures, 4 table

    The state of hemostasis in pregnant women with hydramnion

    Get PDF
    Purpose. To determine the state of various stages of hemostasis in pregnant women with hydramnion as a risk factor for premature detachment of the placenta. Results. There was investigated the state of hemostasis in pregnant women with hydramnion by low piezoelectric thromboelastography (LPTEG) and standard coagulogram. According to the LPTEG results this group of women was found to have increased plasma coagulation potential manifested in elevated constant thrombin activity (TAC) by 76.8%, the intensity of coagulation drive (ICD) by 74.9%, maximum clot density (MA) by 16.8%, shortening of coagulation time (T3) by 7.8% and inhibition of fibrinolysis manifested by decrease in retraction intensity and clot lysis (RICL) by 67.7% (p<0.05). Conclusions. The state of hemostasis in pregnant women with hydramnion is characterized by increased plasma coagulation and inhibition of fibrinolysis potential that are factors of preparing the woman’s body for the upcoming birth to control and minimize blood loss
    corecore