1,636 research outputs found
When Gravity Fails: Local Search Topology
Local search algorithms for combinatorial search problems frequently
encounter a sequence of states in which it is impossible to improve the value
of the objective function; moves through these regions, called plateau moves,
dominate the time spent in local search. We analyze and characterize plateaus
for three different classes of randomly generated Boolean Satisfiability
problems. We identify several interesting features of plateaus that impact the
performance of local search algorithms. We show that local minima tend to be
small but occasionally may be very large. We also show that local minima can be
escaped without unsatisfying a large number of clauses, but that systematically
searching for an escape route may be computationally expensive if the local
minimum is large. We show that plateaus with exits, called benches, tend to be
much larger than minima, and that some benches have very few exit states which
local search can use to escape. We show that the solutions (i.e., global
minima) of randomly generated problem instances form clusters, which behave
similarly to local minima. We revisit several enhancements of local search
algorithms and explain their performance in light of our results. Finally we
discuss strategies for creating the next generation of local search algorithms.Comment: See http://www.jair.org/ for any accompanying file
A knowledge-based expert system for scheduling of airborne astronomical observations
The Kuiper Airborne Observatory Scheduler (KAOS) is a knowledge-based expert system developed at NASA Ames Research Center to assist in route planning of a C-141 flying astronomical observatory. This program determines a sequence of flight legs that enables sequential observations of a set of heavenly bodies derived from a list of desirable objects. The possible flight legs are constrained by problems of observability, avoiding flyovers of warning and restricted military zones, and running out of fuel. A significant contribution of the KAOS program is that it couples computational capability with a reasoning system
Dust-temperature of an isolated star-forming cloud: Herschel observations of the Bok globule CB244
We present Herschel observations of the isolated, low-mass star-forming Bok
globule CB244. It contains two cold sources, a low-mass Class 0 protostar and a
starless core, which is likely to be prestellar in nature, separated by 90
arcsec (~ 18000 AU). The Herschel data sample the peak of the Planck spectrum
for these sources, and are therefore ideal for dust-temperature and column
density modeling. With these data and a near-IR extinction map, the MIPS 70
micron mosaic, the SCUBA 850 micron map, and the IRAM 1.3 mm map, we model the
dust-temperature and column density of CB244 and present the first measured
dust-temperature map of an entire star-forming molecular cloud. We find that
the column-averaged dust-temperature near the protostar is ~ 17.7 K, while for
the starless core it is ~ 10.6K, and that the effect of external heating causes
the cloud dust-temperature to rise to ~ 17 K where the hydrogen column density
drops below 10^21 cm^-2. The total hydrogen mass of CB244 (assuming a distance
of 200 pc) is 15 +/- 5 M_sun. The mass of the protostellar core is 1.6 +/- 0.1
M_sun and the mass of the starless core is 5 +/- 2 M_sun, indicating that ~ 45%
of the mass in the globule is participating in the star-formation process.Comment: Accepted for A&A Herschel Special Issue; 5 pages, 2 figure
Hier ist wahrhaftig ein Loch im Himmel - The NGC 1999 dark globule is not a globule
The NGC 1999 reflection nebula features a dark patch with a size of ~10,000
AU, which has been interpreted as a small, dense foreground globule and
possible site of imminent star formation. We present Herschel PACS far-infrared
70 and 160mum maps, which reveal a flux deficit at the location of the globule.
We estimate the globule mass needed to produce such an absorption feature to be
a few tenths to a few Msun. Inspired by this Herschel observation, we obtained
APEX LABOCA and SABOCA submillimeter continuum maps, and Magellan PANIC
near-infrared images of the region. We do not detect a submillimer source at
the location of the Herschel flux decrement; furthermore our observations place
an upper limit on the mass of the globule of ~2.4x10^-2 Msun. Indeed, the
submillimeter maps appear to show a flux depression as well. Furthermore, the
near-infrared images detect faint background stars that are less affected by
extinction inside the dark patch than in its surroundings. We suggest that the
dark patch is in fact a hole or cavity in the material producing the NGC 1999
reflection nebula, excavated by protostellar jets from the V 380 Ori multiple
system.Comment: accepted for the A&A Herschel issue; 7 page
Nanoparticle growth following photochemical α‐ and β‐pinene oxidation at Appledore Island during International Consortium for Research on Transport and Transformation/Chemistry of Halogens at the Isles of Shoals 2004
Nanoparticle events were observed 48 times in particle size distributions at Appledore Island during the International Consortium for Atmospheric Research on Transport and Transformation/Chemistry of Halogens on the Isles of Shoals (ICARTT/CHAiOS) field campaign from 2 July to 12 August of 2004. Eighteen of the nanoparticle events showed particle growth and occurred during mornings when peaks in mixing ratios of α‐ and β‐pinene and ozone made production of condensable products from photochemical oxidation probable. Many pollutants and other potential precursors for aerosol formation were also at elevated mixing ratios during these events, including NO, HNO3, NH3, HCl, propane, and several other volatile organic carbon compounds. There were no consistent changes in particle composition, although both submicron and supermicron particles included high maximum concentrations of methane sulfonate, sulfate, iodide, nitrate, and ammonium during these events. Nanoparticle growth continued over several hours with a nearly linear rate of increase of diameter with time. The observed nanoparticle growth rates varied from 3 to 13 nm h−1. Apparent nanoparticle aerosol mass fractions (yields) were estimated to range from less than 0.0005 to almost 1 using α‐ and β‐pinene as the presumed particle source. These apparent high aerosol mass fractions (yields) at low changes in aerosol mass are up to two orders of magnitude greater than predictions from extrapolated laboratory parameterizations and may provide a more accurate assessment of secondary organic aerosol formation for estimating the growth of nanoparticles in global models
On the nature of the deeply embedded protostar OMC-2 FIR 4
We use mid-infrared to submillimeter data from the Spitzer, Herschel, and
APEX telescopes to study the bright sub-mm source OMC-2 FIR 4. We find a point
source at 8, 24, and 70 m, and a compact, but extended source at 160, 350,
and 870 m. The peak of the emission from 8 to 70 m, attributed to the
protostar associated with FIR 4, is displaced relative to the peak of the
extended emission; the latter represents the large molecular core the protostar
is embedded within. We determine that the protostar has a bolometric luminosity
of 37 Lsun, although including more extended emission surrounding the point
source raises this value to 86 Lsun. Radiative transfer models of the
protostellar system fit the observed SED well and yield a total luminosity of
most likely less than 100 Lsun. Our models suggest that the bolometric
luminosity of the protostar could be just 12-14 Lsun, while the luminosity of
the colder (~ 20 K) extended core could be around 100 Lsun, with a mass of
about 27 Msun. Our derived luminosities for the protostar OMC-2 FIR 4 are in
direct contradiction with previous claims of a total luminosity of 1000 Lsun
(Crimier et al 2009). Furthermore, we find evidence from far-infrared molecular
spectra (Kama et al. 2013, Manoj et al. 2013) and 3.6 cm emission (Reipurth et
al 1999) that FIR 4 drives an outflow. The final stellar mass the protostar
will ultimately achieve is uncertain due to its association with the large
reservoir of mass found in the cold core.Comment: Accpeted by ApJ, 17 pages, 11 figure
- …