2,501 research outputs found

    Josephson Junctions defined by a Nano-Plough

    Full text link
    We define superconducting constrictions by ploughing a deposited Aluminum film with a scanning probe microscope. The microscope tip is modified by electron beam deposition to form a nano-plough of diamond-like hardness, what allows the definition of highly transparent Josephson junctions. Additionally a dc-SQUID is fabricated to verify appropriate functioning of the junctions. The devices are easily integrated in mesoscopic devices as local radiation sources and can be used as tunable on-chip millimeter wave sources

    Spin and Conductance-Peak-Spacing Distributions in Large Quantum Dots: A Density Functional Theory Study

    Full text link
    We use spin-density-functional theory to study the spacing between conductance peaks and the ground-state spin of 2D model quantum dots with up to 200 electrons. Distributions for different ranges of electron number are obtained in both symmetric and asymmetric potentials. The even/odd effect is pronounced for small symmetric dots but vanishes for large asymmetric ones, suggesting substantially stronger interaction effects than expected. The fraction of high-spin ground states is remarkably large.Comment: 4 pages, 3 figure

    The Metropolis and Evangelical Life: Coherence and Fragmentation in the ‘Lost City of London’

    Get PDF
    This article examines the interplay of different processes of cultural and subjective fragmentation experienced by conservative evangelical Anglicans, based on an ethnographic study of a congregation in central London. The author focuses on the evangelistic speaking practices of members of this church to explore how individuals negotiate contradictory norms of interaction as they move through different city spaces, and considers their response to tensions created by the demands of their workplace and their religious lives. Drawing on Georg Simmel’s ‘The Metropolis and Mental Life’, the author argues that their faith provides a sense of coherence and unity that responds to experiences of cultural fragmentation characteristic of everyday life in the city, while simultaneously leading to a specific consciousness of moral fragmentation that is inherent to conservative evangelicalism

    Microwave spectroscopy on a double quantum dot with an on-chip Josephson oscillator

    Full text link
    We present measurements on microwave spectroscopy on a double quantum dot with an on-chip microwave source. The quantum dots are realized in the two-dimensional electron gas of an AlGaAs/GaAs heterostructure and are weakly coupled in series by a tunnelling barrier forming an 'ionic' molecular state. We employ a Josephson oscillator formed by a long Nb/Al-AlOx_x/Nb junction as a microwave source. We find photon-assisted tunnelling sidebands induced by the Josephson oscillator, and compare the results with those obtained using an externally operated microwave source.Comment: 6 pages, 4 figure

    Energy Level Statistics of Quantum Dots

    Full text link
    We investigate the charging energy level statistics of disordered interacting electrons in quantum dots by numerical calculations using the Hartree approximation. The aim is to obtain a global picture of the statistics as a function of disorder and interaction strengths. We find Poisson statistics at very strong disorder, Wigner- Dyson statistics for weak disorder and interactions, and a Gaussian intermediate regime. These regimes are as expected from previous studies and fundamental considerations, but we also find interesting and rather broad crossover regimes. In particular, intermediate between the Gaussian and Poisson regimes we find a two-sided exponential distribution for the energy level spacings. In comparing with experiment, we find that this distribution may be realized in some quantum dots.Comment: 21 pages 10 figure

    Addition Spectra of Chaotic Quantum Dots: Interplay between Interactions and Geometry

    Full text link
    We investigate the influence of interactions and geometry on ground states of clean chaotic quantum dots using the self-consistent Hartree-Fock method. We find two distinct regimes of interaction strength: While capacitive energy fluctuations Ύχ\delta \chi follow approximately a random matrix prediction for weak interactions, there is a crossover to a regime where Ύχ\delta \chi is strongly enhanced and scales roughly with interaction strength. This enhancement is related to the rearrangement of charges into ordered states near the dot edge. This effect is non-universal depending on dot shape and size. It may provide additional insight into recent experiments on statistics of Coulomb blockade peak spacings.Comment: 4 pages, final version to appear in Phys. Rev. Let

    Quantum Dots with Disorder and Interactions: A Solvable Large-g Limit

    Full text link
    We show that problem of interacting electrons in a quantum dot with chaotic boundary conditions is solvable in the large-g limit, where g is the dimensionless conductance of the dot. The critical point of the g=∞g=\infty theory (whose location and exponent are known exactly) that separates strong and weak-coupling phases also controls a wider fan-shaped region in the coupling-1/g plane, just as a quantum critical point controls the fan in at T>0. The weak-coupling phase is governed by the Universal Hamiltonian and the strong-coupling phase is a disordered version of the Pomeranchuk transition in a clean Fermi liquid. Predictions are made in the various regimes for the Coulomb Blockade peak spacing distributions and Fock-space delocalization (reflected in the quasiparticle width and ground state wavefunction).Comment: 4 pages, 2 figure

    Statistics of Coulomb Blockade Peak Spacings within the Hartree-Fock Approximation

    Full text link
    We study the effect of electronic interactions on the addition spectra and on the energy level distributions of two-dimensional quantum dots with weak disorder using the self-consistent Hartree-Fock approximation for spinless electrons. We show that the distribution of the conductance peak spacings is Gaussian with large fluctuations that exceed, in agreement with experiments, the mean level spacing of the non-interacting system. We analyze this distribution on the basis of Koopmans' theorem. We show furthermore that the occupied and unoccupied Hartree-Fock levels exhibit Wigner-Dyson statistics.Comment: 5 pages, 2 figures, submitted for publicatio
    • 

    corecore